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TIMING CUODES ON THE CRAY-1: PRINCIPLES AND APPLICATIONS

ABSTRACT

Complete instruction-timing infcrmation for the CRAY-1 computer is
prasentad together with a method of recording the minimum necessary details
for procise prediction of the running time of various algorithms. Several
examples of optimum assembly language coding are listed, with comments that
illustirate the timing details. Usage of the code CYCLES which predicts
timing of actual CAL, CFT, or CIVIC progrems is described. Usage of codes
TIMER a&nd TALLY is described.

I, INTRCDUCT TGN

rhe aim of this document is to show how to lacate and analyze the
21 of a code that are important from a timing viewpoint. Computer
TIMER snd TALLY are wusaful for ithis purpose. Then, having identified
@l sactions, we consider how te perform than optimally. Computer code
is of valua in obtainisng such performance,

Cn the CRAY-1, optimum programming coneists of finding the best
ithm and avo j1ng conflices in imp ting it. Usually the best
algor ithm can be characterized as a "papallwl vaector" algorithm.

Once an algorithm has been decided upon, one must consider how it can be
implenented with sactual hardware instructions. The algorithm may have to be
chang Junes ynavoidabhlse conflicts due to the shared nature of the
LR“Y"1 % s, registers, functional units, and mamory. Avoiding
conf i 1c|s pr!m@.xly a mather of understanding the timing details involved.,

Several examples of improvad performance achieved through timing
anglysis will be given. (For a description of the enviromnment at LLNL in
which yvour code will run, see Appendix B.)



[I. OVERALL TIME ANALYSIS ©N THE CRAY-1

The first step in improving the performance of a code is to find out

whera2 it is spending its time. In mest programs there is some small
iterative algor ithm that uses the majority of the CPU time. Thus,
improvamants to & very limited nunber of lines of code can result in dramatic

recductions in the amount of time raquired to pe~form a calculation. In
particular, if you have a FORTRAN program in which, say, 70% of the time is
spent in one innmer DO loop, vou can limit vour effort, initially, to making
improvonemnts toe that loop. In such cases, obviously, the us2 of assembly
largu e should bhe considered. Much of this report will be concerned with
time analysis of relatively snall assembly langusge routines. Hovever,
initially we look at Tull cods analysis,

Code Timing with TIMER and TALLY

The LASNEX code group, primarily Jim Kohn and Georgs Zimmerman, has put
Togethvar 5 i le set of towls to do code timing on the CRAY-1 (and 7600).
Fhe ) 3 are similar te BEGINMAP-ZRNDMAP but are simpler to use. The
O[T roclue by this set of teols is much less extensive than BEGCINMAP but
containg the =2ssontial ingredients to do tTiming analysis for almost any code.

Lit TIMER is a subroutine which vou must c¢all in your code. The call looks
ike:

CALL TIMER(!IGC, ‘FMAME' ,BUFFER, LBUFFER, ‘HEADER’ , ILHEADER)
where,

Iac is an 1/0 Coninector (16C) available for 1/0. However, if this 10C
ever becomns unavailable, TIMER tries to find another one. The
IOC is active only during actual writes to disk by TIMER. 1CGC=0
is satisfactory.

FNAME is a file sequence name. A sequenced name is formad from this by
appending a Jdigit (usually 0) on the right end of the name
truncating the lefimosst character if necessary. I1f FNAME already
ends with a decimal Jdigit, FNAME is used as is for the first file
in the soguencs, [f any file in the sequence alreoady exists it
will be destroved.

BUFFER is an 1/0 buffer. [t must be permanently available and reserved
for TIMER s use only. Otherwise garbage could be written to disk.
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I_LBUFFER is the length of the 1/0 buffer. It may be any size convenient
for the user. 512 words seems to work quite well,

HEADER 13 an ASCIT string which will be written into the beginning of the
dizk file to identify this timing file (in case multiple runs are
maida) . Davte, time, code name, problem name are some possible

items that you may wish to put in the header.

LHEADER  is the word length of HEADER. It must be at least ohe word long,
evaen if the haeader itself is klank.

TIMER oparates by interrupting your code every 4 milliseconds and
finding out what tha p-counter is, It stores the p-counter in the buffer,
dumps the buffer I+ necessary, and then returns from interrupt. TIMER itself
dons not perform any actual timing aralysis. It just creates a timing file
with procounters in it. The aciual aralysis is done by the TALLY code.

Te obtain a Fomp\@te tLiming analysis of your code, TIMER should be
r“ll@d a8 oar nsible dL‘lhg the @xecutloh of your cocde. Once the call
- I

. nec other calls are reguired until your code wants to
el malysis, Your code ﬁhould not be affected by the
TIMER in it, The overhead is approximately S5 microseconds per
which should noet be detectalrle. TIMER conteins only about 100

lines uf FORTRAN so t is vary small.

To terminate the timing analysis, a call must be made to TIMEND. TIMEND
is called with no arguments. It shuts down the timing, flushes the buffer,
clos the file and tTruncatas it. TIMEND is an entry point inside TIMER.

Mo externals are reguired by TIMER (or TIMEND) . It is self-contained,
It is available bv laoading your code with ALIBCRAY. If you cannot access
ALIBIRAY, the scurce for TIMER may be extracted from file CLASS, and compiled
to prnduce a binary file for LDR.

TIMER stores one other piece of information in the timing file along
with the p-ccunter. This is a process indax. This ind=2x is read from common
block /Q2LDBKX/ which is ona word long. By default this word is set to
Your mmde may aet this word at any time to designate the current process

which is active. The only reason to o this would ke to cobtain a mo
deLnﬁlrd bPL"kdown of the ussge of utility subroutines (2.g. SQRT, LGG EXP,
BASELLIBR routines, etc.) azcording to the structure of your code For
example, you could fingd out which logical process in your code is using SQRT
The most, This feature is usually used in overlayed (or segmented) codes
wheira the overlay (or sagment) number can be stored into this common block.
But any sxrgla levael code could use this equally well, Max imum value for
this proocess index is 255 on CRAY.
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The TALLY code reguires 2 files in order to do a timing analvysis. The
first is the set of timing files (usually 1 file) produced by the TIMER
rout ina. The zecond filza is the symbol table fTile produced by the loader.
The symbol takle is usually containad ir vour controllee file so you may
normal ly use yvour excecuting code name as the symbkol table file. A copy of
TALLY can be extracied from public file "NELSON", at LLNL.

The execute line to run TALLY is:
TALLY timing-file-name symbol-takle-file [options]l / t v

wharz the following options are available,

none (i.e., no options specified). This does a short timing analysis.
Histograms on a subroutine by subroutine basis are not produced.

ALIL. This does a complete timing anzlysis producing all of the output
TALLY can. Mozt people use this option.

BS. n Set the Bin Size to n parcels. Tally accumulates timing information
inte bhins. EFach bin represents n parcels of your code. Default is

Nn=32 (8 words) which works very nicely.

The timing analysis produced by TALLY is fairly straightforward to
understand., It is broken into 3 logical sactions. Each sections includes
percantage braskdeowns as well as actual numbers of hits. The term "hit"
geaigﬁates an instance of the p-counter being in a given routine or a given

in.

The first section does on overall timing analysis. The number of hits
in each subprogram as well as the percent of the total time the subprogram
used is listed. A subprogram sgppears in this list cocnly if at least 1 hit was

recorded within its bounds.

The second section does a similar Kind of analysis but by process index.
Thus this is a bit more detailed. The usage of commonly used utility
aubprograms is brolen up by trocess index.

The third section (if requested with ALL.) is a detailed analysis (via
histogram) of each subprogram for which hits were recorded. The breakdown is
by bins where a bin raepresents a small section of code. The number of hits
within a bin is printad along with a ‘bar’ indicating graphically the
relative time spent within tha bin. Mote that the algorithm determining the
lerngth of ithe ‘bar’ is non-lingar, The actual hit count must be used for an
acocurata, detailed analvsis,
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Example of output from TALLY.

First, for a GRAFLIB ‘typical’ test problem written to identify those
routines in which timse was being spent.

01/27/81

NHIT= @98

LOCATIGN LENGTH SUBRGUTINE NHIT PERCENT
00061626 00000635 MAIN, 3 . 3006
00063560 0C000D15  RNFL 3 3006
¢QoBA754 00000515  JPPL2A 1 . 1002
Q0087425 Q0000106 ZMOVEBIT 7 .7014
00071430 000092634 KXDRPL 2 . 2004
Q0072275 00000040  ZMUVEWRD 3 . 3006
00073725 00000146 KXVT2D 126 12.6253
00074073 00000230 KACL2D 444 44.4890
00075740 00002450 KPFRLN 356 35.6713
00110614 Q0000070 QBPAK 51 &.1102
00113633 00000041 [ZIOSTAT 2 . 2004

Second, after about one personal month of effort spent recording the
three main time-consuming routines into CALL.

03/16/81

NHIT= 218

LGCATIGN LENGTH SUBRGUTINE NHIT PERCENT
Q0061653 QCO0063H% MAIN, 2 .9174
00063805 00Q0001% RNFL 4 1.8349
000EZE22 0G000121  ZCITOA 1 . 4587
Q0065278  CO00UE26 JPPL2A 1 . 4587
00070173 0QOQ0Q106 ZMOVEBIT 4 1.8349
00074424 00000620 KXDRPL 1 . 4587
00075255 Q0000040 ZMOVEWRD 4 1.8349
00077130 00000040 HKXVT2D 7 38.2110
00077170 0COOGD076 HCL2D 128 58.7156
00101335 00002410 KPFRLN 6 2.7523
00114365 00000525 KFRVEC 10 .5872
00115112 QH00D070  QBRPAK 49 22.4771
00115202 00003050 KWBFFN 1 . 4587

Anothar month spont devaeleoping and coding vector versions of HCL2D and
QABIMAK reduced them o 34 and 19 hits respectively, and rasulted in a final
tenfold inprovement for this heavily used LLNL unility, (NHIT= 97).
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FLOWTRACE

Often one would like to find out which subroutines of a large code are
frequently called and gain an cverall knowledge of its flow. CFT users can
acsomplish this by using FLOWTRACE. This is a compile-tim2 option, which,
gl;hough axpersive, does praoduce a rather nice breakdown of a code’s

ehavior.

An example of the output from FLOWTRACE is shown below. Full details
and assistance are available from the local CRAY representatives.

ROUTINE TIME % CALLED AVERAGE T

1 FENBTV 0.058817 1.18 1 0.059817
CALLS THGEN
2 THGEN 0.067451 1.33 23 0.002933 CALLED BY FENBTV
3 BCOND 0. 04305 0.68 1 0.034805 CALI.ED BY FENBTV
4 1COND Q. 023386 0. 46 1 0.023386 CALLED BY FENBTV
5 PREFRON 0.001754 0.03 1 0.001754 CALLED BY FENBTV
& VSTRAP 0.087725 1.72 1 0.087725 CALIED BY FENBTV
CALLS OUTSOL
7 OUTSOL 1.190628 23.41 46 0.025883 CALLED BY VSTRAP
8 FRONT 1.455038 28.60 22 0.068138 CALLED BY VSTRAP
CALLS QVSET
9 QVSET 0.010048 0.20 94 0.000107 CALLED BY FRONT
10 MAKEIL 0.0358%2 0.70 6 0.005975 CALLED BY FRONT
CALLS QVSET
11 BASIS 0.0600200 0.02 9 0.000100 CALLED BY MAKEL
12 MAKEQ 0.226627 4,45 132 0.001717 CALLED BY FRGNT
CALLS NLMAT
13 NLMAT 0.117850 2.32 132 0.000824 CALLED BY MAKEQ
CALI.S ENCOM
14 ENCOM 0.017083 0.34 132 0.0001298 CALLED BY NLMAT
15 NLRHS 0.001008 0.02 6 0.000168 CALILED BY MAKEQ
16 BACSUB 0.679884 13.37 22 0.030%04 CALLED BY FRGNT
17 ITER 0.0%58382 1.1 21 0.002781 CALLED BY VSTRAP
CALLS QVSET
XK K TGTAL 5.087028
axk OVERHEAD 0.0332986
SUBRAUTINE LIMKAGE OVERHEAD SUMMARY 922 CALLS
MINIMUM MAX T MUM AVERAGE CYCLES SECGNDS %
T REG!STERE o] 22 6.2 28594 3.57e-04 0.0070
B REGIETERS 2 8 4.3 26306 3.29e-04 0.0065
ARGUMENTS o] 5 0.8 2876 3.60e-05 0.0007
87776 7.22e-04 0.0142

total
MAXTMUM SUBRBUTINE DEPTH = 7



Call Second(0)

Gathering timing information can be made an integral part of a routine.
A basic tool 1 recommernd for this use within a specific FEORTRAN subroutine is
the FUORTLIR function SECOND. Cn the CRAY-1, SECOND returns the total
unweidhted CPU time charged against your code since execution began. Calls
T QFfﬁNﬁ e relatively cheap (approximataly 5 microseconds per call) and
are2 not subject to variations due to the current time-sharing load on the
machine. Uither technigques may be uced for finer analysis of small code
sections, but for overall purpocses SECOND is adeqguate. An example of its use
is shown in the code below.

140 325)
DIMENSIGN (1024)
CALL LINK(’UNTTSS=TERMINAL/ /")
E = SECUND(O0)
TM = SECCND(0)-E
TT = TMx97&. x25. x4
TS = 0
T2 = O
X = .125
Y = 015625
A = i5.5
WRITE(59,58) A,X,
56  FORMAT( AHECKING FOR A = ', F7.4," X = *,F7.5," Y = ', F8.8)
DO 4 K =1,25
Bo= A+XxK
D& 1 M=1,1325
1 D(M) = BxB-M
DO 3 J = 1,976
C = YxJ
TA = SECEND(0)
DO 5 i=1,1024
FCI) = (E-RXD(1))/2
5 CONTINUE
TR = SECONL(0)
TS = T5+47B
TA = SECOND(O)
Do 2 1
IF(F(I
E = SE
WRITE(ES
60  FORMAT
2 CONT I HUE
1B = SEX
T2 = T2
3 CONTIN
4 CONTINL




E = SECGMND(Q)

WRITE(SS,59) A E,1,J,K

WIRITE(S3,61) T5,T2,TT

FORMAT (P LOGI"S TIME =’ ,F9.4,3X,'LediP2 TIME =’ ,F98.4,3X
% , 'CLGCK CALL VIME =°,FS.4)

STEP 1

FORMAT( A TIME I J K*,7/, N3 HIT",
a 2F9.4,31%)

iNote: The sourca code for this example, MF301T, as well as the

ithe CRAY-1 in public LIB file CLASS. Cne can extract and run
this exnmplm using the CIVIC compiler as follows (lower case

1
1
H
isources for all other examples in this writeup are resident on |
1
= s
Ityping repraesents usar input; uppser case is computer output): H

lib cla

Cc 0% /1?/79 09:41:03 844400

UK. x mf2301%
K., end

ALL DGNE
civic mf301t mfc

®xkx CRAY LﬁADFR VERSIGN - C120 03/08./79

ALL. DENE
mfc

CHECKIMNG FOR A = 15.5000 X = 0.12500 Y = 0.0158625
HIT AT 1%.7500 0.98414 0. 0825 1.6408 248 63 2
HIT AT 16.2500 1.0158 0.0625 7.8015 264 65 6
HIT AT 16.5000 4. 12%0 0.2500 11.1986 272 264 8
HIT AT 16.7500 9.4219 0.5625 14.8103 280 603 10
HIT AT 17,2300 9,7031 0.5625 20.99538 297 621 14
HIT AT 17.5000 4.3750 0.2500 23.5364 306 280 16
HIT AT 17.7%00 1.1094 0.0625 26.2874 315 71 18
HIT AT 18&. 2500 1.1406 0.0625% 32.4474 333 73 22
HIT AT 18,5000 4, 6250 0. 2500 35.8786 342 296 24
A TIME J J K
NEHIT  15.500 38,4972 1025 977 26
LaaEs TIME = 15. 6641 (W lu TIME = 18,4826 CLOCK CALL TIME = 4.2944




The follewing, for comparison,
vectorized Tor loop 5@
rcft i=mfR01t, go
CFONQ - CFT VERSION - 01/28
CFQU1 - CCMPILE TIME = Q.Q
CFOonz2 - 5ﬂ LINES,
xxx CRAY LEGATER VERSION - cl1z
CHECKING FER A = 15.5000 X
HIT AT 15,7500 0.9844 Q.
IT AT 16,2500 1.0158 0.
HIT AT 16,5000 4.1250 0.
HIT AT 16.7300 Q.4219 0.
HIT AT 17.2300 9.,7031 0.
HIT AT 17.5000 44,3750 (o
HIT AT 17.7300 1.1094 0.
HIT AT 18.2500 1.1406 0.
HIT AT 18.5000 4.6250 0.
A TIME 1
NO HIT 15.5000 22.4518 (025
L.OGPS TIME = 1.1869 LOoP2
From thess numbers, we can

is the CFT version, whi

ch is

automaticall

>/81 1.08k
346 SECCNDS

44 STATEMENTS
0 03/08/79

= 0.12%00 ¥ = 0.015625
0625 0.9592 248 63 2
0625 4.5498 264 65 6
2500 6.5256 272 264 8
5625 8.6349 280 603 10
582% 12.2467 297 621 14
2500 13.7301 306 280 16
0625 15.3368 315 71 18
262% 19.9301 333 73 22
2509 20k9280 342 296 24

Q77 26

TIME = 16,9523 CLOGCK CALL TIME = 4.1

see that (for the CFT

improvement efforts should be directed toward loop 2.
calls to SECOND will be eventually removed. )

version, at least)

(And,

of course,

v

968
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IRTC and/aer Q8RTC

The CRAY-1 has a cycle counter as cne of its hardwasre features. This is
a counter which siteps by one aach machire clock pariod of 12.5 nanoseconds.
Detailed timing of code sectioms can b2 done using this counter. However,
the counter steps w Sheer or ot your program is runnhing, so care must be
taken with its use in the time-sharing environmant. The counter, called RTC

(for real-time clock), is directly readable using FORTRANM, With CFT, one
uses the construct. N = IRTC((), and with CIVIC, N = Q&RTC(0), where N is an
integer variabhle name. The compiler gerserates only the code necessary for
reading the RTC amd storing the reading in memory location N, a total of 48
bits of code, normally reqguiring only 3 extra clock periods to perform. (In
certalin casss a longer time is required bocause of an S-register, path, or
memory conflict,)

Tha use of IRTC is illustrated in the sessicn below. In the example, a
FORTRAN routine calls a CAL assembly routing, which adds the first 51
elements of arrays A and B and places the result into array C by use of a
scalar loop.

Here, it was possible to improve the perfoermance of the machine on this
example by about 6% by merely reordoring the modules in memory. There are
(zadmittedly pathological) examples of this type of thing where a change in
running time of 100% occurs., Such changaes are due to thz asvoidance of (or
introduction of) conflicts.

First, the source codos for the example are extracted.

lib class

C 07/06/79 13:19:51 844400
K. x abos abosf

OK. end

ALL DGNE

_‘IO_



Trixgl ol'abecs
19 LIMES ( 80S8)

.

1 % CAL [=ABOS B=BABCS,L=LSC

2 IDEMT ABCS

3 COMMIIN ABCCIMMUN

4 BSS 57

5 B BSS 56

6 C BSS 56

7 BLACK ABCS

8 ENTRY ABCS

9 ABCS A1 0

10 A2 51

11 L.ogP S1 A, A1l

12 s2 B,Al

13 S3 S1+FsS2

14 C,Al S3

15 Al Al+1

16 AQ Al1-A2

17 JAN LOOP

18 J BOO

1@ END

Natist
CAL I=ARC3 B-BARCS,[.=LSC
ZFC3

[3.0001
CADT2 - 0062K MEMORY + 0117K 1/30 BUFFERS USED
ALl DUNE
o!abcst
17 LINES (  808)

T

T % CFT !=aABCSF,@N=G,L=LSF,B=BSF _
g * X LD 1=(B3F,RABCS) ,ML=MSF, X=XB$S,0RDER=CLNB, FIRST=BSF

* BS

4 COMMON /ABCOMMENS A(S6) ,0UTRANGE,RB(56),C(56)
5 CALLL LINKC UNITSE=TERMINAL/ /")

] Y oo= ORI CRXR N KY R K

7 DI 1 1 = 1,169

8 1 ACl) =1

L] CUTRANGE = &800004000000000000000B
10 M = IRTC(O)

11 CAL!L. ABCS

12 N = IRTC(Q)

13 X = N-M

14 WRITE(S9,59) C, X

1% D9 FORMAT{7F6.0)

16 STOP

17 END

-11-



L uUN

CFT [=ABCSF,GN=G, |_.=L_SF,B=BSF

FTO04 - CFT VERSICON - 04/06/79 SCHEDULER
FTOO1 - COMPILE TIME = 0.0195 SECONDS
ALL DONE

LDR [=(BSF BABCS),ML=MSF,X=XBS,ORDER=CLNB, FIRST=BSF
ALL. DUNE
XBS

59, 61. 63. 65. 67. 69, 71
73. 75, 77. 79, 81. 83. 85
87. 89, 91. 3. 95, 7. 99
101, 103. 105. 107. 109. 111, 113
115. 117. 119. 121. 123. 128, 127
129. 131. 133. 135. 137. 139. 141
143. 145. 147. 149, 151. 153. 155
157. 159. 185. 166. 167. 168. 169
1773.
STGP

The last number listed (1773) is the number of machine cycles elapsing
between the two uses of [RTC in the code ABCSF.

Motice, next, the result of an zpparently innocuocus change to line 2.
rp2! =BSF! =DARCS

.nflrun
17 LLINES ( 808)
CFT I=ABCSF,C0N=G, L=L=L.SF,R=FSF
FT004 - CFT VERSIOM - U4/06/79 SCHEDULER
FT001 - COMPILE TIME = 0.0121 SBECANDS

ALL DONE
LDR [=(BSF,BABCS) ,ML=MSF, X=XRS,0RDER=CLNB, FIRST=BABCS

Al DONE
XBS

’

55, 61. 63. 65. 67. 69. 71
73. 75. 77. 79. 81. 83. 85
87. 89. 1. g3. 8%, Q7. 29
101. 103. 105. 107. 109. 111, 113
115. 117. 119, 121. 123. 125, 127.
129. 131. 132, 135. 137. 139. 141.
143, 145. 147. 149. 151. 153. 155.
197. 159. 165, 166. 167. 168, 169
1659,
STGP
ALL DONE

_.12_



Gther Methods

One can use the 072 machine instruction directly to discover ultra-fine
timing details raelated to hardware and special code loops. This detail is
mace availakle to the CRAY-1 programmer through use of the public file
“CYCLES". Sea Section 1V for more information.

_13_



N I PREDICTING TIMING

The rest of this paper will be used to demonstrate (and, | hope, teach
vou) a method for explicitly predicting timing. The method can halp in
avoiding unnec2ssary conflicts in assembly-language-coded subroutines or in
loops which one expacts to utilize considerable machine time and for which,
theraefora, onzs is justifiad in spending conside;able human time to obtain top

performance. Since the method outlined is almost complately mechanical, a
program Using thess ideas has been written To generate timing charts such as
Thosa shown balow. The pirogram is called CYCLES. Its usage is described in

Section IV «f this roport.

I will assume that the reader is familiar with the CRAY-1 Hardware
Manual and CAL asscembly language. Iri particular, the five pages of our
Appencix A, taken from ths CRAY-1 Hardware Manual, list much of the
information readoed Tor timing purposes. Examples will be either given in CAL
or, on occasion, takenm directly from the long listing of CFT or CIVIC.

Cerneral Remarks

In general, the time reqguired to perform an algorithm depends on the
specific instructions used to perform it and on the relationships among those
instructions. A complete understanding of the relevant conditions affecting
the execution of a particular instruction can be gained only by considering
ites relation to surrcunding instructions. In particular, vector instructions
raduire somewhat more analyvsis than scalars.,

I find that recording at most five easily computed numbers per

inatruction will give the necessary information for determining conflicts and
suggest ing ways toe avoid thoem, For & scalar (or register) instruction one

ne to ke ack of: (1) when it issues, and (2) when it completes, For
a vector instruction one has to note: (1) its issue tims, (2) its chain

time, and the (di
registers, (4) its

fPeremt) tines when it has finishoed using: (3) its input
functional unit, and (3) its output register.

In all cazes, except for scalar memory-referencing instructions (and
normally it is true thern, also), osnce the issue cycle has been determined,
all the other timing nunbars foro that instruction are computable. The rules
for doing these computations are statad on page 25 of this report, and the
exceptions are noted in appropriate examples.

Takle 1 (adepted from Appendix D of the CRAY-1 Hardware Manual) lists
the entire set of timing numbers (first column) needed for most purposes.
These specify the numkt of 2.9 nanosaecond machine cycles required by the
CRAY-1 to deliver a result to the appropriate register. (0 means no result
goes to @ register,) Further detail is available in Chapter 4 of the Cray-1
Hardware Menust in conjunction with each specific instruction description.

Note. All instructions uzing the Memory Funct@onal Uhit are subject to
possible additional del 5 dua to memory bank conflicts with 1/0,

_‘|4_
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Tabhle 1.

Cy - H H
clas !CRAY-1 tCAL. mnemonics
@ } 000x»x 1ERR
50 Pxx000i jk 1ERR XD
o] x0T 000 L NOP
1 E**0010jk ECA,AJ Al
B )
1 x0T ik 1CL,A] Ak
1 :**0012jx 1CI,Aj
1 E PXA Aj
1 } iRT SJ
1 i 1PCI SJ
1 ' 1CCH
1 i VECIH
1 i tDC1
1 i VL Ak
1 ; *OOEGXO VL 1
1 i 0021xx 1EFI
1 i QO22xx 1DFI
3 : 0O3xix (VM Si
3 Tox00N3x0x VM o]
o } C0A4xxx 1EX
50 PRk Q04i jli TEX
4GS I QO jloxi.J Bjk
S5(+) | D061 jkmiJ 2%
5C4) o 0071~k H I3 o)
5(4) | Cl10i jkmiJAZ 2XP
Sy Oi1ijkm! JAN 22X
S{+) | O12ijkmi JAP axE
S(+) | 0133 jkm ! JAM XD
5{+) | D141 jlnt JSZ exp
S5(+) 018§ dkm: JEN axp
S(+) | 0161 jkwm ' JSP exp
S(+) | 0171 jlm i JEM @XE
1 1 0201 k!
1 i o211 kmiAl axp
1 i C22ijk 1Ad exp
1 i 023ijx 1Ai Si
H G24ijk 1Ai Bjk

* Spg¢1a1 CAL syntax form.

HK laged 1o monitor moede.
% L that the field

~rEates a zero in this pos
+

instruction buffer.

L IR D A N IR R A N S D 2 N A R R R RO S R N N N AN A N A B R |

is not used by the hardware;

Instructicn and Tlmlng Summary

{Errror exit
tError exit

iNo operastion
1Set the channel
ito (AK)

(Aj) current address
and begin the [/0 sequence

1Set the channel (Aj) limit address to (Ak)
iClear chann2l (Aj) interrupt flag

iEnter YA register with (Aj)

1Enter real-time clock register with (Sj)
Entezr 1] with (S$j)

lear clock interrupt

nable Clock interrupt

isable clock interrupt

ransmit (Ak) to VL. register

ransmit 1 to VL register

nable interrupt on flt pt error

isable interrupt on fl1t pt error
hahsmit (8j) to VM raegister

lear VM register

Normal exit

iNormal exit

PJump to (BJk)

PJump toe exp

O—lUm—l—iUmO

]
i
[l
1
1
i
]
i
]
1
1
i
1
P
1
i
1
3
1
i
1
i

IReturn jump to exp; set BOO to P
iBranch to exp if (AQ) = O
iBranch to axp if (A0).NE.O
1Branch to exp if (AQ) positive
iBranch to exp if (AQ) negative
Branch to exp if (30) = 0
iBranch to exp if (S0).NE.O
iIBranch to exp if (80) positive
iBranch to exp if (80) negative
i Transmit exp = jkm to Ai

i Transmit exp = 1’'s complament
tof jkm to Al

i Transmit exp = jk to Al

i Transmit (Sj) to Al

i Trarnsmit (Bjk) to Ai

the assembler

ition.

Jump instructiong take longer il
Thay than

branched-to
use

address is not already
the memory functional unit.



1 H 025ijk IBjk Ai | i Tranamit (Ai) to Bjk
4 H 028ix0 1Ai PSj :Pop/LZ iPopulation count of (Sj) to Ai
4 | 026ijt1 1Ai Qs ‘Pop/LZ \Pop count parity of (Sj) to Ai
3 H Q27ijx 1A 23} \Pop/LZ iLeading zero count of (Sj) to Ai
2 i Q30ijk 1Ai AJ+AK A It Add 1Integer sum of (Aj) and (AKk) to Ai
2 I xCB0i0k 1A Ak 1A Int Add (Transmit (AK) to Ai
2 V%0301 j0O 1A Aj+1 A Int Add lnteger sum of (Aj) and 1 to Ai
2 T 031ijk 1Ad Aj-Ak 1A Int Add :[nT:g@a difference of (Aj) less (AK)
i i 1 it i
2 Tox081i00 1A -1 (A Int Add iTransmit -1 to Al
2 i Xx031i0k [Aij -Ak 1A Int Add ITransmit the negative of (Ak) to Ai
2 i x031ijO0 A Aj-1 ‘A Int Add ilntegeir difference of (Aj) less 1 to Aj
] H 032ijk 1Ai AjxAk 1A Int Multilnteger product of (Aj) and (Ak) to Ai
4 i %033i0x 1A Cl 1 - | Chanrel number to Ai (j=0)
4 T x0Q33ijo Ai CA,Aj | - tAddress of chanrnel (Aj) to Ai (j.NE.O)
4 H 033ij1 1Ai CE,AJ E :%PPEE flag of channel (Aj) to Ai
| i 1 V0
14(+)E 0341 jk EBJk,Ai , AQ EMemory i?cad (Al) words to B register jk firom
140+) | x034ijk {Bjk,Al 0,A0 iMemory §$Ag? (Al) words to B register jk from
L} 1 1 ]
6(+) | 0351 jk E,AO Bjk,AiEMemory E?kore (Ai) words at B register jk to
6(+) | x035ijk [0,A0 Bjk,Ai!Memory iStore (A1) words at Be register jk to
14¢+){ 036ijk iTik,Ai ,A0  [Memory E?ié? (Ai) words to T register jk from
14(+)§ *®0361i jk ETJK,Ai 0,AO0 EMemory E?fo? (Ai) words to T register jk from
6(+) i 037ijk i,A0 Tik, Al {Memory E?XO)e (Ai) words at T register jk to
6(+) | x037ijk 10,A0  Tjk,Ai!Memory iStore (Ai) words at T register jk to
1 i 040ijkmiSi exp | - {Transmit jkm to Si
1 1 041ijkmiSi axp 1 - :Trﬁgsmxt exp = 1’s complement of jkm
i i H ito i
1 1 042ijk 1Si <exp ES Logical iForm 1°’s mask exp = 64-jk bits in Si
i i H ifirom the right
1 I x042ijk iSi #rexp IS Logical Form 0’'s mask exp = jk bits in Si from
H H i ithe left
1 T x042i00 1Si -1 'S Logical (Enter -1 into Si

¥ Special CAL syntax form.

+ The cycles needed = this number + (Ai), Also, ho issues allowed
till completion.

x Field not used.
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*04?1?7
043i jk

*0431i jk
x043iQ0

*x047i0k
x047ij0O

*x047i00
0301 jk

—_

x030i jO

051ijk
*051 10k

0541 jk
0551k
0561 jk

*x058ij0

W OWNN NN———-—

X  Special CAL

F#
A
0
X
T

nomne 0 0
0o
oo
24
N

#SK&SJ

#SB&Sj
Sj\Sk

Sj\sSB
SB\Sj
#3J\8K

#SkK
#3j\SB

#SB
Sj!SissSk

w nh v

»w »n wn O

Sj!sSi&sB

Sj!sk
Sk
Sj!'SB
sSB

Sic<exp
Siraexp

O O e v e e

Si<exp
Si>exp
Si,S8j<Ak

Si,8j«1

w wnn whnnhnn o

-

asyntax form.

w0 Onh 0 0 O O uende

0 wuorn nuounnnhn o

Logical
Leogical

lLogiical
Loegical
Logical
lLogical
Logical

Logical
lLogical

Logical
Logical
Logical

l.ogical
Logical

l.ogical

Logical

Logical

L.ogical
lLogical
Logical
Logical
Shift
Shift

Shift
Shift
Shift
Shift

iDescription

iEnter 1 into Si
iForm 1's mask exp = jk bits in Si
ifrom the left
iFerm 0's mask exp = 64-jk bits in Si
ifrom the right
Clear Si
ogical product of (S$j) and (Sk) to Si
ign bit of (8j) to Si
gical product of (Sj) and 1°'s
mplement of (Sk) to Si

cleared to Si

of (Sj) and (Sk)

o
)

Sj) with sign bit
ogical ddifference
o)

ogql: sign bit of 3j, then enter

nto Si
froggle sign bit of 8j, then enter
into Si (j.NE.O)

ogéqal equivalence of (Sk) and (Sj)
o Si

ransmit 1’s complement of (Sk) to Si

ogical aquivalence of (Sj) and sign
it to Si
nter 1's complement of signh bit

into Si
ogical product of (Si) and (Sk)
omplement ORed with logical product

1
i
11
i
]
i
1
i
]
1
Il
1
[l
'
1
1
1
1
1
1
Il
[
'
1
[l
I
]
1
1
1
]
'
)
]
1
]
1
1
[l
1
1
1
1
1
]
'
1
1
]
r
1
1
1
1
1
1
1
1
1
1
1
1
1
ll
]
]
1
]
1
'
1
i
]
i

d(ndounwr*mcnnr=4r'~mo(7r—4ﬂ0'=4dr=-4-4&r—~nr-mr

_‘]7_

f (Sj) and (SKk) to Si

calar merge of (Si) and sign bit of
$j) to Si

ogical sum of (3j) and (Sk) to Si
ransmit (Sk) to Si

ogical sum of (Sj) and signh bit to Si
nter sign bit into Si

hift (Si) left exp = jk places to SO
higg (Si) right exp = 64-jk places

[}

hift (Si) left exp = jk places

hift (Si) right exp = 64-jk places
hlgt (Si and Sj) left (Ak) places

o Si

hlgp (Si and Sj) left one place

o Si



______________________________________________________________________________________ g
Cy- H : H i ]
cles 1CRAY-1 iCAL. mnamonics tUnit iDescription s
3 i *xCBBi0k 1Si Si<Ak 1S Shift iShift (8i) left (Ak) places to Si ]
3 1 G57ijk 181 Sj,8i>Ak 1S Shift IShig'l; (S and Si) right (Ak) places 5]
1 | H ito i B
3 PxQE7150 1Si Sj,8i>1 18 Shift :Shé?t (8 and Si) right one place g
i i i o i
3 Vox08710k 1S Si>Ak 'S 3Shift iShift (Si) right (Ak) places to Si i
3 H 0B0ijk 18i S,j Sk 1S Int Add lnteger sum of (8j) and (Sk) to Si
3 } Ustijk 181 8-Sk 1S Int Add :Intgger diffaerence of (Sj) and (8Sk)
i H H ito Si Ll
3 ToXx081i0k 1S ~Sk 18 Int Add Transmit negative of (Sk) to Si i}
<] P 082ijk 1Si Sj+F8k IF.P. Add  (Floating sum of (Sj) and (Sk) to Si o
6 Vox0B2i0k 151 +F8Sk iF.P. Add iNormalize (Sk) to Si ]
|53 \ Q83ijk isi Sj-FSk TF.PL Add :Flogtihg diflference of (Sj) and (Sk) 5
| H 1 ito i
& T x08Ji0k 181 -FakK EF.P Acid !Tragsmit normalized negative of (Sk) %
i H 1 ito i
7 1 0G4ijk 1Si Sj*xFSk i1F.P. Mult :Flogting product of (Sj) and (Sk) ]
i H i ito Si ]
7 1 065ijk 18i SjxHSk \F.P. Mult 1Half precision rounded floating B
: i i iproduct of (Sj) and (Sk) to Si L]
7 i 068ijk 1Si Sj*RSk  IF.P. Mult 1Full precision rounded floating ]
H H H iproduct of (3j) and (Sk) to Si B
7 P 0E7ijk iSi Sjx ISk \F.P. Mult {2 —SFloatihg praoduct of (Sj) and (Sk) g
H i H ito i 5
14 v 070ijx 181 /HS iF.P. Rcpl (iFloating reciprocal approximation of B
1 i i 1(Sj) to Si ]
2 i G71i0k 1S Ak | - iTransmit (Ak) to Si with no sign B
1 i H rextension 7]
2 i 071i1k i8i +Ak i - iTransmit (AK) to Si with sign ]
i H ) rextension B
2 | 071i2k iSi +FAK 1 - iTransmit (Ak) to Si as unnormalized [
} i 1 ifloating poinmt number
2 1 C71i3x 181 0.6 H - i Transmit constant 0,75%2x%48 to Si
2 i 071idx 181 0.4 ) - i Transmit corstant 0.5 to Si 2]
2 H 071i5x i1Si 1. H - i Transmit constant 1.0 to Si ]
2 ' 071i6x i18i 2. | - ‘| Transmit constant 2.0 to Si B
2 1 071i7x 18i 4. H - iTransmit congstant 4.0 to Si B
1 1 072ixx 18i RT ! - i Transmit (RTC) to Si B
1 1 073ixx 131 VM i - i Transmit (VM) to Si ]
1 1 07dijk 18i Tik ] - i Transmit (Tjk) to Si [}
1 P07%1jk TR Si H - iTransmit (Si) to Tjk ]

X Special CAL syntax form.
Field not used.
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1} i
s 'CPﬁY 1 {CAl mnemonics
: 0701\m 1S Vi, Ak
! 077ijk 1Vi,Ak 3
1 *07710K Vi Ak 0
H 10h1jkm!Ai 2, Al
VX TO0F jlkmi Al ey, 0
V%1000 jkm i A axp,
T x10hINOCTAL , Ah
| TThijkimiexp, Al Aid
Pox1 10 jkmiexp, 0  Aid
| *ﬂ101wkm.expj Ad
VT ThiOO0, Ah Ai
1 12hi jkmtiSi exp, Ah
Tox12010 jlkmi Si exp,
%1201 jkmiSi exp,
Pox12ki00N1I S , Al
Voo I3kl jkmiexp, Ah Si
. *13ﬁijkm:exp,0 Si
V#1301 jkmiiexp, Si
X TIShinoDt, Ak Si
| 1404 jh EVi SjéEVk
E 1411 jk iVi VjsVic
H 142ijk Vi Sjlvk
H *142i0k Vi vk
H 143ijk Vi Vij!Vk
\ 144ijk Vi Si\Vk
Pox1451i1 Vi o]
E 1451 jk iVi Vizvik
i 1461 jk EVi SjVikaVYM
P x146i0k Vi HVMEVIK
E 1471 jK iVi VJj I VRKE&VM
i 150ijk 1Vi VJj <Al
VoX150i 30 Vi ARS]
| 151Tijk Vi VJ>Ak
Pox1911j0 Vi vi>1
E 1521 jk iVi Vi, VJj<Ak
Special CAL syntax form.

tMeamory
iMemory
iMemory
tMermory
iMemory
Memory
iMemory
iMemonry
iMemory
iMemory
{Maemory
'Memory
iMemaory
Memory
iMemory
i Memory
Logical

-
=

Logical

Logical
Logical
lLogical
Logical
Logical
Logical

lLLogical

Legical
Logicatl

Shift
Shift
Shift
Shift
Shift

LK << € K<LLLK <K<K <

-19_

rans: mlt (Vi, element (AK)) to Si
ransmit (Sj) to Vi element (Ak)
lear Vi elenent (AK)

ead Trom ((AR) + exp) to Ai (A0=0)
ead from (exp) to Ai

ead from (exp) to Ai

ead from (Ah) to Ai

torae (A1) to (Ah) + exp (A0=0)
tere (Ai) to exp

tore (Ai) to exp

tore (Ai) to (Ah)

Read Trom ((Ah) + exp) to Si (A0=0)
cad from exp to Si

cad from exp to Si

ead Ffrom (Ah) to Si

tore (8i) to (Ah) + exp (A0=0)
tore (Si) to exp

tore (Si) to exp

tore (Si) to (Ah)

og&cal products of (Sj) and (VK)

o Vi

og&qal products of (Vj) and (Vk)

o Vi

ogical sums of (Sj) and (VK) to Vi
ransmit (Vk) to Vi

ogical sums of (Vj) and (VK) to Vi
ifferences of (8j) and (V) to Vi
Slear Vi

O

o Vi

ransmit (Sj) if VM bit = 1;

Vk) if VM kit = 0 to Vi

ector merge of (V) and O to Vi
ransmit (Vj) if VM bit = 1;

Vk) if VM bit = 0 to Vi

QN ~A—<~—d r—ﬁQr—e'—eﬂ—r&'-mmman:u:u;u:smmccm;um:u;uOA-‘

hift (Vj) left (AKk) places to Vi
hift (Vj) left one place to Vi
hift (Vj) right (Ak) places to Vi
hift (Vj) right one place to Vi
ou$1o shift (Vj) left (AK) places
© i

gical differences of (Vj) and (Vk)



CAL. mn=amonics 1Unit iDescription
6 oXIB2iIjO Vi Vi,Vj<l IV Shift ‘Dougl» shift (Vj) left one place
1 i | ito i
6 i 183ijk Vi Vi, Vi>Ak iV Shift 'Doucl shift (Vj) right (AK) plsaces
i 1 1 rto i
] Pox15B3iJj0 Vi Vi,Vj>1 IV Shift 'DouSle shift (Vi) right one place
i H i ito i
5 i 154ijk Vi Sj+VEK IV Int AddilInteger sums of (Sj) and (Vk) to Vi
S H 155ijk Vi Vj+Vi 1V Int Addilnteger sums of (Vj) and (VK) to Vi
5 H 156ijk Vi Sj-Vk Vo Int Addtlhtgger differesnces of (Sj) and (VKk)
i i H ito i
5 XISk Vi -V W oInt AddiTransmit negative of (VK) to Vi
S H 157ijk Vi Vi-Vk Vo Int Add:[mtsger differences of (VJj) and (Vk)
i i 1 ito i
9 H 160ijk Vi Si*FVk iF.P. MultiFloating products of (Sj) and (VK) to Vi
9 H 161ijk Vi VJxFVik tF.P. MultiFloating products of (Vj) and (Vk) to Vi
9 1 162ijkk Vi SjxHVIK FLoP. MultiHal! precision roumdcd floating
i ' H tproducts of (8j) and (VK) to Vi
] i 163ijk Vi V j xHVI IF.oP. MultiHalf precision rounded floating
i ' i iproducts of (Vj) and (VK) to Vi
9 i 164ijk Vi S xRV TFLP. Mult:?gz?ded $loating piroducts of (Sj) and
i H i i to Vi
9 i 165ijk Vi Vj*RVK {F.P. Mult:?sﬁnded Cloating products of (Vj) and
1 i i i ) to Vi
9 H 166ijk Vi SixIVik TFLOPL. Multd %VQ)rIOﬂﬁng preducts of (Sj) and
i | 1 i +to i
<] } 167ijk Vi Vi*IVk F.P. Mult:%vf‘floaalhg products of (Vj) and
1 1 1 i <) to i
8 i 1701 jk Vi Sj+FVk 1F.P. Add IFloating sums of (Sj) and (Vk) to Vi
8 P x170i0k Vi +FVK tF.P. Add iNormalize (VK) to Vi
8 1 171idk Vi Vj+FVKk {F.P. Add [(Floating sums of (Vj) and (Vk) to Vi
8 1 172ijk Vi Sj-FVk {F.P. Add EFIOvtlﬁd differences of (Sj) and (VK)
i H ; ito Vi
8 TR 17210k Vi -Fvk iF.P. Adld :Tragsmlt normatized negatives of (VK)
i i i ito i
& 1 173ijk Vi Vj-FVk \F.P. Add :Flo$tlng differences of (Vj) and (Vk)
i ] | :To i
16 i 174ij0 Vi /HV EF.P. Repli T&o?tlngvreciprocal approximations of
i i i | Jj) to i
8 i 174ij1 1vi PV j ‘{F.P. RcpliPopulation courtts of (Vj) to Vi
8 \ 174ij2 1vi Qavj IF.P. RcepliPop count parity of (Vj) to Vi

¥ Bpecial CAL s

<
=
py
&
X
-
o
3
3



C
>
&
[w]

CRAY -1 ;CAL mnemonics

escription

5] ! 1785%xj0 VM Vi, 2 1V LogicaliVM=1 where (Vj) = 0

53 i 175xi1 VM Vi, N 1V LogicalivM=1 where (Vj).NE.O

<] H 17%xi2 VM Vj,P 1V LegicaliVM=1 whare (V]j) positive

6 i 175xj3 VM Vi,M iV o Logical ivVil=1 where (Vi) negative

9 H 176ixk Vi , A0, Ak [ Memory iRead (VL) words to Vi from (AQ)
' i i tincremented by (AK)

9 P X176ix0 (Vi LAQ FMemory iRead (VL) words to Vi from (AO0)
1 i | Vincremented by 1

o] i 177xjk 1,AQ0, Ak Vj IMemory iStore (VL) words from Vj to (AQ)
{ H H Vincrementaed by (AK)

O E *¥177%jQ EJA0,1 V. iMemory EStowe (VL) words from Vj to (AO0)

ncremented by 1

—

X  Special CAL syntayx form.
x Field not uysed.
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The Basic Details

I'n general we have the following scanario: in order to perform some
ration of the contents of one or more of the machine’s registers or
OPJ, an instruction must: first, wait to be brought into one of the

truction buffers; sccond, wait until prior instructions have started;
wailt till its operands are available; and fourth, wait until all
nants (such sthe @along which information may flow, registers
Y = ded, and functicnmal units that may be employed) will be
silable during vhe cyele(s) required, The CRAY-1 hardware maintains
reservation tables, upcated ~h cycle, for each register and all other
~ac comporerts. It rele or issuss an insiruction only when it can be
comploted without intserferasnce from other previously issued instructions.,

Gengrally, timing analysis begineg when the first instruction of interest
issues, but it is naive mot to consisder its placsement in an instruction
buf fer and the rcute by which it reachsd issuable condition. Fer many
ulgori*hms, w0l changas on the crder of 10% ocour depending on their
placemant relative to the steart of arn instruction buffer. Details about the
instraction fetch mechanism e fourc in Appendix C.

All of the information used to decide aboui the issue of an instruction
is conteined in its 16 bits or, in ths cass of & 32-bit instruction, in its
upper 16 bits. Mormally the decision To issue can ke made in one cycle.
Whern an instruction isasues, the comgonents it will use are reserved in the
apper ot iate table for the appropriats time period.

Ore type of 32-bit instruction, which makes a scalar memory reference,
is al1owmd Lo issue when all of the componants it will need are available
] vopossibly the appropriate memory bank. I+ the bank is available at the
prnm tima, =ll procosds normally. I1f not, completion of the instruction is
delayed and the next instruction requesting memory is not allowed to issue
until the previous one has obtained tha proper memory access. Instructions
not radquiring mamoery, however, may procesd normally.

Until & specific instruction issues, the machine cannot look beyond it
to detaermine that »&méﬁklﬁd further down in the instruction sequence could be
dore, I is the tas 7 the programmar and compiler to so order the
CoifstT @t i on thai [RISTRT St ry delavs are avoided. When you program in
as senh!y 1 : , it important (and not difficult) to maintain an

X af the resources of the machine called into play by each
| of the cyoles in which they are usad, in order to appreoach
on of the hardware.

opulmum utiliz

During the issue cycle, paths are cpened so that information can flow
agisters to Ffunctional units; during the completion oycle, paths are
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regquiraed for informatiorn to flaew from functional units to registers. Only
oehe path is ailable to service all results being returned to any of the
zight S reg 2S . There is also one path for the A-registers. Possible
corflicts over the use of thaese paths are resolved before an instruction is
allownd Lo issue. A separatse path into and out »f each vector register is
provided, Maorcover, infermaticon arriving at any register in a given cycle
may also ba redirectad by a subseguent instruction, in that same cycle, to
serve as input for another opesration. That is, a subsescuent instruction may
issue on the same cyacle in which its operands first beccne available. This
redirectiorn of information arriving at & vector iegister is called chaining,
and it may t in only during the particular cycle when the first element of
the result is ceturned from a functicnal unit. [f two different functional
units roturn their first results in the same cycle, a third instruction may
chain Trom both of them.,

. An exception to this "same cycle rule" occurs for conditional branch
instructions, which require that their sperand register becomes available
somewhat bafore issue.

Two Short Examples

Let us consider what the hardware must take intec account to decide when
to issue a couple of typical instructions.

First, a scalar floating point acdd! 62312, S3 S1+FS2,

Hhen the instruction sequence reaches such an instruction, the hardware
chaecks its res2rvation tables to see that none of the following conditions
are Lirue! (1) the floatimg point add functional unit is busy (i.e.,
resarved) in this cyele, (2) regisier 33 is busy, (3) register S1 is busy,
(4) ragister 52 is busy, (B) a reservation exists for the S-register input
path O cycles hence. I1¥ any of these conditions are true, the instruction

does not issue. In the next ocycle (the machine having updated all its
tables), the same conditions are tested. Eventually, all the necded

conporants will ke fres arnd the instruction will issue. When it does, the
tables will have:! (1) & busy condition placed on 83 for 6 cycles (i.e.,
cles 0,1,2,3.4, and 8) and (2) a reservation placed on the S-register input
cyeclas hensae (cvels 6) . (No resarvation is put on a functional unit
insteuastion,) In the next cycle, the next insitruction will be
for issue, =and the components it nesds will be checked for

Mow consider @ vactor instruction: 171312, V3 VI1+Fv2.

Whan this floating point vector add is reached, the hardware checks its
resorvat ion tablos for the following conditions: (1) floating point adder
eserved, (2) vector register V3 busy, (3) V1 busy, and (4) V2 busy. It does
Nt e Lo chack fTor peaih roservations since each V-register has its own
ey, When norme of these conditions are true, the instruction issues. When
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it doms, (1) the tables have a busy condition placed on V1 and V2 for,

max (VL) 8) cvelas, where (VL) is the current value of the vector length
?g; ter (thus for short vectors a minimum reservation of 5 cycles occurs),
25

a busy is placed on the floating point adder for (VL)+4 cycles, (3) a
husy is pl# T on V3 for ecycles 1 through 7 and cycles 8 through
Tama VL), S Cyele 8 iz the "chain" cycle.

The Timing Chart

We can kesp track of important cycles by listing them in a timing chart.
Then, when we want 1o consider whether a particular instruction can issue, we
have the information at hand. In practice, it is easier to list the cycles
when abcompon T will naxt become ready for use than to record those in which
it i3 busy.

In such a chart, 1 and C refer to issue cycle and completion cycle for
scalars, r ectively, while 1,C,6,F, and R refer to issue cycle, chain
cycle, operand regisier ready cycle, functional unit available cycle, and
result register roady cvcle for vectors.

Thus we have! I cC © F R
62312 S3 S81+Fs2 0 5

while, suppesing the following instruction comes in sequance with the above
and that (VL) = 64:

171312 V3 VI1+Fv2 1 ¢ 65 g9 73,

The numbers recordad in the various columns represent the cycles in
which certain important chenges will occur @s a result of the issue of the
instrruction in guestion. (Since for scalar instructions, the last three
are not particularly informetive, one may omit them.) Different

instrustions tie up different machine resources for differing
riumk s of cycles, & indisated in Table 1. (See also Appendices A and D of
The CRAY -1 Mardware Marual. ) In the examples that follow, we will
demcintrate the practical use of these timing numbers., In general, the entry
in the C column is the I number plus the appropriate instruction
axecution-complate time from the first column of Table 1.

Yy

Preliminary Considerations

Consicder the first add mentioned above:! 62312, with I = 0 and C = 8.
The B has two maanings. First, it is the cycle on which the result will b
returned to 83 via the S-register output path. This means that this number
carnet apresr as the C cycle for any other (later issued) instruction whose
result is destined Tor any S-register. For example, if the next instruction
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were 76567, transmit a V-register element to 85, which takes 5 cycles, then

the machine must delay its issue. If you are recording the I and C numbers
for a series of instructicns, you should notice when you record two identical
numbars in the C column, If ithe second is a result for the same set of

registers as the first, it will be delayed, and you must adjust the issue
cycle accordingly.

Secondly, the 8 has another meaning. Cycle 6 is also the cycle on which
the regiscter becomss available for use (either as an operand or a result) by
anothor instruction. For exazmple, in coding a set of instructions, one might
attenpt to reuse an Sragister before i1 has completed a previous operation,
Thus, one might do a reciprocal intoe S8 and then read the time clock into 86,
The timing is then:

1 o]
70610 0 14
72600 14 15
since the result of the clock read is not allowed to use 86 until the
reciprocal is through with it. This assures that the result of the
reciprocal will be cverwrittan by the later instruction.

It is perhaps moere common that a later instruction which would use the

result of the reciprocal as an operand, would have to wait for it. Thus:
1 o]
70810 o] 14
67561 14 21

woulld be the timing for these two instructions.

For vector instructions, the relations among the numbers 1, C, O, F, and R, i
are fTound as follows!: Whaen the issue time | becomes known, then C will be |
aoaual to 1 + the chain tims for this instruction (the chain time being the |
functional unit time + 2), 0 will equal I +(VL), F = [+4+(VL) (thus F will |
noermally ke O+4) (here, however, one exception exists, for vector store F =)
[+5+(VL)), and finally R = C + (VL). For short vectors, where (VL) 5 4, C |
and F are a3 before, while 0 = [+5 and R = C+5. E

Thus if (VL)

[
N
=
U]
J
o
<
0

I
171312 1

All five vector timing numbers depend only on the chain (C) cycle (from
Takble 1), (VL), and issua (1).
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Two Basic Examples and Comments

In the twn examples below, taken from (more or less) real programs,
near ly all of the main jideas surrounding accurate timing of code are
ment i oned ., Examine the instruction sequence and refer to the notes for an
explanation of the timing numbers listed.

Examsle 1

First, we consider the earlier example, ABC:

1 % CFT 1=ARCSF,0ON=G,L=I_.SF,B=BSF
g * xBlgDR [=(B3SF,BABCS) ,ML=MSF, X=XBS, ORDER=CLNB, FIRST=BABCS
x

4 CUMMCN /ABCOMMEIN/ A(EG),GUTRANGE,B(SG),0(56)
5 FALL LINKC UNTTS9=TERMINAL// ")

6 = KOO HRY %X

7 DG 11 = 1,169

8 1 ACl) =1

Q DUTRAMGE = 600004000000000000000B

10 M = [RTC(Q)

11 CALL ABCS

12 N = IRTC(O)
13 X = N-M

14 WRITE(S9,89) C, X
15 %9 FORMAT (/F6.0)

16 3T7apP
17 END

ABC consists of a FURTRAN part, ABCSF (MAIN.), where the RTC is read,
anc @ CAL part ABCS, whsre adds are done. We note that we are timing the
care whare the assanbly porticn is loaded first.

Listed below is the set of six assembly instructions generated by CFT
for the portion of the code where the RTC read occurs (extracted from the
long listing). The =ddiress listed is after the load. Rz=call that I and C
refar Lo the maching cycle on which instruction issue and completion,
respaectively, oscour (see Table 1). (The small letters refer to notes
following.)
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Machine code Mriemonics

Addiress (octal) (decimal) 1 c Comment
2%51a 072300 S3 RT Oe 1f Read RTC
251b 132300 000225 M,0 S3 19 ~h Save RTC
251d 022700 A7 0] 3i 4] Arg count
252a QU7000 001000 R ABCS 4 19k Call subroutine
282¢c 120100 000225 S M,0 1657m 1668n Get saved RTC
2534 072700 S7 RT 1659 1660 Read new RTC
Notes: (a,b,c,d at the left refer to the parcel address in the word where
the instruction is located.)

@, Assume all resources of the machine are available, initially.

. A "72" instruction reguires one cycle to complete after issue (see

Table 1). It any previocusly issusd instruction had needed to put a

result into any S-register during cycle 1,
instruction would have to ke delayed by the machine.
. The instruction following a 16-bit instruc

cycle (id th
available.

aore is no confl

ict, as is the

the issue of this

tion may issue on the next
case hzre), S3 being now

h. A store instiructicn uses an S or A register only during the issue
cycle. The result actual ly reaches memory several cycles later, but

for purpnses
memery busy
cyecles, whil
i. The inztruct
atter & dela

previously i
A-register~ d

of subsaevuent
conditions, the
aothe reglister
ion following &

fetch instructi
menoiry is esse
itself remaing

32 -bhit instruc

ons, vactor loads, or
ntially frec after four
free.

tion may not issue until

) v oof ong cycle (to bypmss the lower 18 bits),
J. A "z2" instruction requires ons cycle to ¢

ssuad instructi
uring cycle 4,

on nesded to pu
this issue woul

cmplete after issue,. If a
T a result into any
d be dzlayed. (But an

S-reg result could complete then without delaying this.)

k. This instruc
delayed for
mamory -busy
hext 16-word

sased an

lete &t

means that ©

tion, which wou

ld nmormally com

plete at cycle 18, is

one cycle by memory busy from ithe previous store, since a
condition is not allowed when starting the fetch of the

bu¥fer-load of
instruction fr

instructions.
om code already

If this "007" instruction
in a buffer, it would

cycle 9, In the case of & jump instruction, completion

e jumped-to in

struction may i

m. This fetch instruction cannot issus until
. See the analysis of ABCS below.

returns to i
When it does

issue it will

require 11 cyel

memoiry to reach the S-register. The memnor

only four cy

cles,

Mow consicder the CAL portion of our example,

portion above.
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X CAL 1=ARCS,B=BABCS,L=LSC

IDENT ABCS
COMMOGN  ABCOMMEON
A BSS 57
70 B BSS 56
C BSS 56
BL.OCK ABCS
ENTRY ABCS
Q22100 ABCS Al o]
Q22263 ) A2 51
1211 0000000GC LOGP S1 A,A1
1212 0GOHNO07Z1C 382 B, Al
oE2312 $3 S1+Fs2
18313 Qo0O0isic C,Al S3
08N110 Al Al+1
QE1012 AO Al-A2
011 00GOCHAdc+ JAN LCOP
05000 J BOO
END
Since the instructions here form a loop to be performed 51 times, we
must ronsider them more than once. The instrucitions for pass 1 are:!
Machine code Mnemonics
(octal) (decimal) 1 (o]
022100 Al 0 19k 20
GER2263 A2 51 20 21
127100 025511 S1 A,A1 21 32
121200 025602 s2 B,Al 23 34
082312 sSe S1+FS2 34p 40q
121300 025662 C, Al S3 40 -r
030110 Al Al+1 42 44s
o162 AQ Al1-A2 44 46
011000 o01002 JAN LOCP 48t 53u
ous0Ge) (J B0OO) (50 S57)v
Notes for pass 1:
K. See previous note k.

P. The issue of the add instruction is delayed until kboth operands (S1 and
S$2) have aririved from memory. The cmpletion cycle of the S2 fetch is
the start cyoele of ihe =dd.

A fleating peoint add requires six cycles to complete (from Takle 1).

r. Normally, we don’t need to consider memory. S3 is available to start the
store at cyvcla 40, and remains available for cther use in the next cycle.



s, An address add requires two cyvcles. (So does an A to A move, which is
really an add of )

t. A conditional jump instruction doss not issue until two cycles after the
needed operard becomes available. (AQ is returned at 46; 47 is skipped;
48 ig issue.) Oiher instructiong, even one using AQ (but not putting a
result imto AQ) could issue at 47, and the jump would still go at 48,

u. This in-stack branch (to 200¢) reguires five cycles.

The numbers hare refer to the cycles on which this instruction would have
issued and completed, if the program did not branch back.

The instructions and timing for passes 2 and 51 are as follows

Adclrass Ma?géQZI?Ode ngg?ﬂé?? I c

éégs 2

200¢ 121100 025511 St A, Al S3u 64
(add 32 to Pass 1 numbers)

202d 011000 Q01002 JAN L.OOP 70 75

(203b J BOO 72 79)v

(add 1600 to Pass 1. number)

202d c11000 oo1002 JAN LOOP 1648 1653
203b 005000 J BOO 1650w 1657x%
252c 120100 000225 S1 M, 1657 1668
253a 072700 57 RT 1659 1660
253b 120200 000225 S22 M, 1660 1672y
253d 120800 000225 S3 M, 1663y 1676

Notes for Passces 2 through 51:¢

u. The in-stack branch complaetes and this instruction issues during cycle
53,
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V. Once again, these are the "if it didn’t" times.
This time it doesn’t.

X, The return jump requires only seven cycles to complete because the code
that called this routine is still in a buffer.

V. Consecutive scalar loads (or stores) may issue as few as 2 cycles apart
and, if th2y do not address the same memory bank, finish in 11 additional
cycles, If the secund does address the same bank, it will reguire one or
twe extra cycles to finish, and & third consecutive scalar load (or
store) will be delaved from issue until memory is free (at most four
cvclaes later).

In gaeneral, a scalar load or stors that encounters a memory conflict

(which could come from 1/0), issves as usual. This allows subsequent
nonmamory instiructions to proceed normally, while delaying memory
instructions until the conflict is resolved. On the other hand, vector
loads or atoraes (and instruction-buffer loading) wait until memory is
enitirely free befora issuing (or starting). Such delays usually last no
more than two cyeles,

The cycles listed above arae the actual machine cycles on which the
events happaen for the seqguence of instructions given. It should be clear,
however, that we could predict these rnumbers from the timing information in
Takle 1, together with a minimal understanding of the material from
Appendix A (with ths exceptiosn, perhaps, of the memory conflict details).

Che simply procesds tline by line, recording the five columns of numbers, left
to right.

Thus, given the task of writing an efficient scalar loop to compute
C =A*D, we can try a few alternate ways to do it, timing each one as we go,
until we have identified the ore with the lowest last-issue cycle.

For example, changing the three lines

C, Al S3

Al Al+1

AO Al-A2
to

Al Al+1

AOQ Al-AZ2

cC-1,A1 83

woulld cut six cvcles from the loop time and thus result in nearly a 20%
saving in the measured execution time, (26 rather than 32 cycles per loop).

While it is actually posgible to accomplish this loop by a scalar method

in 14 cycl=s por pass, ithe parallel, nonrecursive nature of the loop allows a
much drester saving by using vector instructions. So, let us now consider
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code ABCV, and list its timing details. For an alternate view, we use CIVIC
foir whis compilation.

Exaomple 2
% civie ABCVF CVF BVF LVF P24 L
x XV%DR I =(BABCVY ,BVF) , M_=MVF, X=XVF
"
COMMON /ABCCMMOMN/ A(S6), GUTRAMGE ,B(58),C(586)
QUQ000A CAILLL, LINKC( UNITES=TERMINAL// ")
[plelelelon s} Deg 11 = 1,169
onoogz2c 1 ACl) = 1
[sIaloToNNelp] GUTRANGE = &800004000000000000000B
oao0TI1D M o= ERTCCO)
onaa1ac CALL ABCY
000138 N = Q8RTC(O)
000014B X = N-M
00001 4A WRITE(SS, 59) C,X
59 FORMATI7FG&.0)
No0O3J7C STOP
END
¥ CAL. 1=ABRCV,E=X00,B=BABCV, lL.=LLVC
IDENT ABCV
COMIMCIN ABCOMMON
1 BSS 57
70 B BSS 56
70 c BSS 56
BLGOCK ABCV
ENTRY ABCV
022383 ABCV A3 51
0200 0000G000C AO A
0020303 VL A3
176100 V1 , A0, 1
0200 0O00CGO71C AQ
176200 va ,A0, 1
171312 v3 V1+Fva
0200 QO0nU1s1C AQ Cc
177030 ,AO0, 1 V3
005000 J BOO
END
Again, we consider the code from one read RTC to the next, Mote that

since this particular se2t of adds is not more than 64 in length, it can be
done without locping instructions,

Wee will now record the full five columns of numbers. The I, C, ©, F,
and N refer to issue cycle, chain cycle for vector instructions (or
completion aycle for scalars), operand register(s) free cycle, functional

unit + 2 ovelas, and result register free cycle, respectively.
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Machine cuode Mnemonics

Addlress (octal) (decimal) I o (o] F R
5013d 072300 83 RT o] 1

501 4a 130300 005053 M, 353 1 5

5014c 022700 A7 0 3 4

5014d 007000 024000 R ABCV 4 Qe

5000a 0223623 A3 51 Q 10

5000k 020000 000200 AOQ A 10 11

5000 002903 VL A3 12 13

5001a 176100 V1 , A0 1 13F 2249 -h 68i 73]
S001b gZ0000 0n0271 AO B 14k 15

SONTd 176200 v2 ,AO0, 1 681 77 - 123 128
B5002a 171312 V3 Vi+Fve 77m 85n 1280 132n 136n
S002h 020300 000361 AQ C 78 79

S5002d 177030 A0, 1 V3 136p - 187r 192s -
50C%a 000000 J B00 137 144

2015k 072100 $1 RT 144t 145

5018c¢ 130100 005054 N, S1 192u -

Notes

(a, b, ¢, and d are parcel addresses, after the load, as before.)

e, For this compilation the destination of the return jump is already loaded
into a buffer, su the bronch instruction executes in only five cycles.

f. To begin execution, this vector instruction needs A0 and VL to be ready,
V1 to bhe free, arnd memory to be free. Since they ara, it issues.

g. The first result will be arriving from memory nine cycles after the issue
cycle. This cycle (cycle 22) is the chain cycle for this memory load.

(More on chaining in note m,)

. When this instruction issuas (cycle 13) it transmits as operands the
contents of thae VL register, the special value 1, and register A0 to the
memory rUhctvﬁndl nit ., (Some vector memory loads use a second

ater for the increment.) All these scalar transmissions occur

the issue cycle and are held by the functional unit thereafter.
[Wr,n AD and SO0 are used as special values their reservation is not

and so th2y do not delay issue., Here, however, A0 is also used
to hold an ddreas, and i¥ it had not been {ree when noeeded, the issue
woula be on 1ayed For a vector load irstruction, no vector register is
usad as input, 20 mo entry is made in column O,
i. For this iﬁStPH“I'Oh, the functional unit involved is memory. As with
scmlar memory roforences, a memory bank will be busy for four cycles with
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zach word read. If the vector lcad moves through at least three other
banks before returning to a previous one (as is the case here), no
conflicts will arise, and a new word will be read each cycle. The first
word is reguest At rcycle 138 and the S5i1st at cycle 63, The memory will
be busy for 4 mors cycles, through cycle 67, and free for another memory
reference in the next cvecle. We record 88 = 13+51+4 undeir the functional
v?iﬁ fheedomlumn. Notice that memory is freo five cycles before register
is ready.

When this instruction issues (cycle 13), it puts a hold, or reserve, on
register VI in order to keep it available for the words coming in from
TR Ory . Tha reserve will be lifted after the last word arrives. Since
the (VL) iz 81, the last (51st) word will arrive in cycle 72. (The first
arrives in cvele 22.) In the next cycle the V1 register may be used for
arother purpese; theralfore we record 73 = 22+51 under the result register
kil cotum The CRAY hardware has one element poimter Tor each

ister, and it is used 1o selact one of the 64 positions in the
sister, The pointer for register V1 is automatically stepped from 1
through ©1 during cycles 22 through 72.

T

Since the previous vector instruction read out A0 and (VL), saving them
in the functional unit at the start of the vaector load, subseqguent
instructions may mosdify them immediately without affacting the previous
instruction.

Here a major delay is encountered. This instruction alsoc transmits words
from memory to a V-register, The register is available but the memory is
busy, so issuz is delayed Till it is free (in cycle 68),

This instruction chains. At cvcle 69, it is first considered for issue.
Howaever, bafore it can beogin executing, this vector add needs to have the
vector length ragister, register V1, register V2, the floating point add
functional unit, and register V3 free. V1, as nhoted, becomes free at
cycle 73; V2 will not ke free until 128; but the first element will
arrive at cycle 77 and during that one cycle, it can be redirected, or
chained, to serve as input to the add unit as well as being put into V3.
The conditions for chaining are thus satisfied during cycle 77, and so
the instruction issues.

The first result exits from the floating point adder eight cycles after

the first sperands were sont over. For ithis instruction, then, its chain
cycle is 85 = 77+8. Similarly its result reaegister (V3) free cycle is

136 = 88+51, and its functional unit free cycle is 132 = 77+51+4, The
four extra cycles hers are eqguivalent to the four extra cycles needed for
memory fraee by the memory functional unit. All functional units remain
reserved for four extra cycles after the last element arrives during
vector instrustions. This means that a subsequent scalar (or vector)
Floating point add cannot issue until cycle 132, since it shares this
unit.

Since this irstruction requires that vector register operands be sent to
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the adder for the next 51 cycles, a resarve is placed on registers V1 and
Ve until avele 128, at which time thay will kboth be freoe and able to be
used by @ subsequent operation.,

. This vector store does not chain from the add. In the first place, at
aycle 8%, tha chain ocycle for V3, the momory is busy completing the load
of V2. In the second place, store instructions are barraed by the
hurdware from chaining even if the mshnory functional unit is free. The
stora oo 1Vt begin at cycle 1283 (when the nemory bocomes free) either.

It can’t sague at 123 because the @lement pointer for V3 is not pointing
to V33 first element, which the store needs, but rather at element 39,

which is boing returned by the fleating-point adder. It finally issues

whern register V@ is not otherwisse busy and can have its element pointer

rﬁget, namaly ocycle 136, the result register firee cycle for the earlier

acid .

A store doesn’t chain to anything, either.

Register V3 will be fres after the store at cycle 187 = 136+51.
s, Finally, the memory functional unit will becrme fres from the store five
cyvecles aftoer the oparand register, V3, is free. All other instructions

free their functional units four cyocles after their operand registers but
store reqguires one extra cycle.

t. Since the return from subroutine did not require memory, as the address
is already in a buffer, the next instruction, which for CIVIC is the read
of tha RTC, gets issuad well before the vectior store completes.

U, Finally, we note thai the final stoire of the RTC value to memory is
delayed by the memory busy condition from the vector store, and issues
whaen the mencry funchionsal unit ready cycle occurs.

Conclusions

It should be clear from the timing chart ahove that the CRAY-1 is not
really very busy during this vector add routine. For example at cycle 78,
its busiest cycle, V-registers 0,4,5,6, and 7 are free along with the shift,
f A, multiply, reciprozal, and legical functichal units, Moreover, the
5 (23 well as most of the previous 60) could be used to issue
rnahiructions for a related calculation, if one needed to be done.

w actual ly decroase the time for ABCVY by four cycles by using

Fesourcas., )

Frecguently, parallel use of available resources can be made, especially
in tiwe of vrotor loops. Three examples of actual code are presented in
Sention V to show this: ZVSEEK, QVvDIVO, and QVIZAORTH.
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IV, THE COMFUTER CODE CYCLES

CYCLES is & public file on the CRAY-1 computers at LLNL. It was written
by Rollin Haroding. A Fortran version of it has been madsz available to Cray
Rasearch Inoorporatoad and is being moedifiaed for use under their system,

CYCLES is not a simulator and does not have knowledge of the values in
all machine registers., It «loes, however, try to keep track of the values in
thae VL and A registars. Options allow these register valuses to be specified
fore CYCLES use.

The rest of this section is taken from the documentation for CYCLES. A
E?él wiriteun, CYCLEWUP, cen be extracted feom the CYCLES public file using

Cycles Writeup

CYCLES was designad for detailed analysis of instruction scheduling in
compiled or z@ssambled CRAY codes. The timing analysis is prasented in the
spirit of Harry MNelssan’s report, UCID-30179, Rev. 1, "Timing Codes on the
CRAY~-1", Heirry supplied additicnal timing details and tested the code
extensively oguring the debugging period.

Input te CYCLES is any HSP file from CaAL, CIVIC, CFT, or DDT which
contains the machine codse listing. CYCLES wmccepts single or double column
listings frem CIVIC (M or L option) and the four instructions per line format
from CFT (orn=gl. Secuanrces of octal parcels may be entered from TTY or by
specifying ocial word limits in a coentrollee or other bkinary file. In TTY or
birnary modes CYClI ES adds the equivalent CRAY asscembly language instructions
to the output, i.e. dose a CRAY UNDJ. CYCLES will also accept the history
file procducead by DDT in the MNE output format mocle, This Torm has the
acvantage of using correct symhols for variables in the program being undone.

Sutput consists of a copy of the input file with up to seven columnhs of

Timing information added for anach machine instruction line. (This overwrites
the comment £ 21d in CAL l1istings.) The NOCOPY. option will suppress most
nen-instruction lines from beaeing output. The seven timing columns are:

W numbar of cycles this ingtruction waited to issue

D octal codes identifying any dalays

[ i 1l Tor the curirent instruction

C in cycle or scalar completion cycle

&} erand register ready time

F chior@al unit ready time

R s result ready time
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. The I column is always given; others are suppressed if null or
irrelevant for the current instruction. Alternate definitions for columns C,
O, F, and R for jump instructicns arge given below.

CYCLES is very fast and is easily run as a controllee under TRIXGL.
Juiput can be viewed without line wraparound by using TUBE command S or
TRIX3L. command TV, 1 for small characters. Effecis of altering instruction
senuanees can be choecked zesily by rearranging lines in CYCLES® infile and
rerunning it withoun reassenbling yvour code. One may also rearrange lines in
CYCLES outfile and then use that as the infile. CYCLES CIVIC output is
compatible with single column CIVIC output. CYCI ES’ CFT, CAL, and binary
88¥put arae compatible with CAL cutput. CYCLES’ NDT output is compatible with

output .

Abilities and limitations

CYCLES is aware o¢f most of the fine points of CRAY instruction
aschedul ing:

- chaining reguirements

- recursive vector operations

- no waits for special A0 and SO0 operands

- memcry functional unit reguirements

- vector memory conflicts due to 8%in increments

- A and 8 rggister trurk conflicts.

- extra delay afiter A0 or SO0 ready for conditional jumps.
- scalar memory bank conflicts (with limitations)

- instrustion buffer feiches, conflicts, and delays.

- other spocial cases

CYCLES has to make assumptions about loader dependent conditions such as
instruction buffer dolays and scalar memory bank conflicts. Bank conflicts
may not be detaected if memory addresses are indeifinite. Addresses are
indefinite if they involve undaefined A register values or unspecified
reloceas ion flags. Sptions are provided to specify that the current code
bleck (local relocation) is loaded on a 20b-word buffer boundary or that all
extarnol blocks (subrosuvtines or commons) are loaded on 20b-word boundaries
The ne1*wxhi ot ion rames are +., X., and tx. to szt relocation flags, and
MBS, to turn of f hank conflict checking. IBCIHF . turns off instruction
bud fer chack ing.

A\ th A registers

Mahy instruction tlmlngs depend on values of the vector length register
and A regi g Y Cl. attempts to keap V6L and A regs current as

instructio .d that set th’&e registers, A registers set from
memory or from S req s are considered indefinite. R=2sults of A register
calolations involvirg indefinites are alse indefinite. VL will be set to 64
if it is set from an indefinite A register. Register changes are reported in

-36_

BEECEEEE G EE BRSSO SNEREEENHEE DR DB B E RO EEEE RN



the sutput. Automatic reqister setting can be disabled by the NOVLA.
axacute line option.

You may explicitly reset values for VL, A, or NI (next issue) by
inserting contirel linses into CYCLES’ input file or as commz2nts in a CAL

source file. In column 1 of the input file use IL.n to set VL to n (decimal),
use Cn to reset counters and force the next issue to cycle n {(decimal), and
use An,m to a3t register An to m (decimal). CAL comments *Ln, *%Cnh, and XAn,m

would have the same effects,

For conditional jumps, CYCLES assumes drop through timing. Normally,

the cynle courter I8 reset to zero after each unconditional jump. However,
if the following instruction is recoghnized (by its address) as the target
instiruction, then timing continuos without reset. This can be accomplished

by comntrol cards (CYCLE OFF/INSCOUT or REPEATN described below) or by
rearranging the input file.

For a jump instruction certain columns are redefined:!

o] Earliest issue for the jump target if tha jump is taken
a Target instruction buffer code (see |-buff s=ction)

F Target issue time for an ir-buffer jump

R Target issusz time for an out-of-buffer jump

An out-of-buffer jump can be significantly delayed if memory is busy,
for instance, complating & vector store.

You can control the output for a jump to a later instruction by
inserting a centrol line CYCLE OFF immediataly fter thz jump and a CYCLE I[N
or CYCLE QUT line immediately before the target instruction. CYCLES will
stop timing after the COFF and will resume by issuing the target instruction
at the proper TN bhuffer or OUT of buffer issus time. Comments, XxCYCLE COFF,
etc, , can be used in @& CAL source as well,

A REPEATh line can be used for continuous timing over a jump to an

earlier instruction. The REPEAT line is inserted immediately before the
targat instruction. From then on, each jump instruction is checked to see if
its target has an active repeat line. I¥ it doss, the count n is
docromertaed, and timing continues at the target line using the in buffer time
plus any anpropriatae delays for registers or functional units., Up to ten
repeat lines may be active at any time. Repeats may be nested.

Instruction buffer (1-buff) delays

The CRAY has 4 instruction buffers. They are loaded in rotation. Each
holds 20b words (64 parcels) of instructions, I-buff delays occur each time
exacutbion ghifts from one buffer to ans2ther dus to a jump instruction or
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simply whenh crassing from one 20b block to the noxt. Additional delays
result when memory oparations conflict with instruction fetches or when a
two-parcel instruction straddies @ buffer boundary. For I-buff checking
CYCLES assumes that relative word zero iz loaded on a 20b-word boundary.

[-buff delays are indicated in tha usual way, using dolay code 200b, but
additisnal information is also giver:

B The first instruction from a buffer is marked (between the W and D columns)
by a letter a,b,c, or d for buffer 0,1,2, or 3. Uppzr case means the
instrustions were fetched from memory; lower case means the buffer was
already loaded.

B For jump instructions the target instruction buffer is given under the ©
column, Again, upper coss is out-of -buffer; lower case is in-buffer, A
Jjump to arn extarnal (x relos) address is always considered out-of-buffer.
An unconditiovnal jump out-of-kbuffer clears one instruction buffer unless
the MUOICLR. option is used. A Bn line can be used to clear n additional
instruction buffers.

Delay code 10000k shows that an instruction fetch was delayed because
memory was busy. Bacause of lock-shaad, this does not cause an immediate
delay of issue, but it doas signal a possible delay for a subsequent issue
(usually the target instruction of an out-of-buffer jump appearing in
colummn F).

% Delay code 20000k i
instruction was not
delay is assessed,

ndicates that the parcel address for the current
in a current [-buff or one that had been fetched. No

B Delay code 40000b indicates the possibility of a delay that this version of
CYCLES couldn’t detvarmine. The markaed instruction is parcel 17c of the
current instruction buffer. If the next instruction (17d) happens to be a
two-parcal i uction (this is what the timing subroutine didn’t know)
thern 17¢ would be delsyved until one cvele before the issue time indicated
e the next line Ffor 17d. This delay of parcel 17c could causs further
dalnvs not shown for 17d, 20b, or later instructions, Correct timing can

el ir the curcernt version by inserting an "In" control card before

be produ : : i 8
17, whare n (d2cimal) is the correct issue time for 17c.

Availability of CYCLES

version of CYCLES is maintained in CRAY public file CYCLES.

I E yeo are raoproduced below. The output file is named Hinfile and
is oo sl Ar existing file will be cverwritten. 1f the file
overflows, seguentce nunhers will ke added: 00, etc.

This writeup is available as CYCLEWUP in public file CYCLES. It will be
revised as suggestions are macde or changes made to CYCLES. The revision date
is given on line 1.
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Please send sungestions for enhancements to CYCLES or listings of any
bugs You encountsr to Rollin Harding in A-Division (L-18).

CYCLES HELP:

execute lines!
cycles hspfile type <necopy. hovla. e noiclr. & / t v
cycles tty / 1 v
cycles binfile fwa lwa <abs. end> / %t v (binary input mode)
tvype is cal cft civic or ddt
<> shows opticns. kezp in order. no comma for dropouts.

HOCORY . suppressas non-instruction lines

novia. defeoats automotic setting of vl and a registers

mbhof . suppresses mem bank conflict chacking

X @ssumes both +. and x. (increasss mem bank checking)

+, aasumes prasent routine is loaded on a 20b boundary

X assumas externals are loaded o 20b-word houndaries
*xreloc., oct sets both +reloc. and xreloc. (affects i-buff chks)
treloc, oat =roffset=oct for local word 0 in i-buff and mem bank
xreloc, ot =roffset=oct for external reloc vars and subrs
ibotf. eunpre sses instruction buffer checking

noiclr. suppress clearing an_i-buff afier out-buf uncond jmp

i to continue evacute line
fwa, lwa are octal; may have a,b,pa,pb,etc. parcel tags

abs, anges assumed 3400k minus word offset to O
end va don’t ask for additional fwa lwa pairs

outfile mam2 will be h+infile name

type red for list of delay codes .
tType for list of infile control card options
HELPCC:
in col 1 of cvyeles’ input file (cal,civic,cft,ddt) use:
113 to et vactor length to n (decimal) .
[»1a} to reset registers and set next issue time to n (decimal)
bn To 1&5 noadditional instruction buffers
in i 2t ue to h (dec) without resetting registers

ster am to valus n (decimal)

repreat n % instr to time n jumps back to target

cycle off rycln Cnuntlng, use after conditional jump

cycle on Fesumne counting a2t the “in buffer’ jump time

cvele in sama as oycla on

cvele out resume countihg at the ‘out of buffer’ jump time
use any of these as comments in your cal infile: am,n etc.
in TTY mode use in cn in an,m =&s above, and use

ploci to sa2t parcel to word ‘loc’ and parcel i=a,b,c,d,pa,

am, n
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Talle of Delay Codes

DELAYCD:

octal delay codes:

b functional unit not ready

2b result register not rready

ab operand ragister not ready

10 waiting for chain cycle

20b @ or s register trunk conflict

4Q0b scalar moncry operation bank conflict
T00b cornditional junp delaved by a0 or s0 busy last 2 cycles
200b instruction huffer delay
400b oparand chain cyeles don’t match., can’t chain.
W chain ovels
2000k waits for all instructions to complete
4000k waiting for register block transfer to Finish
10G00L: instruction fetch delaved by memory busy
20Ntk current instr in unexpectod buffer. no delay added
40000k ponsibla twe parcel split delay of 17c¢
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V. EXAMPLES

1 As mentioned above, source code for all theze examples is in public LIB H
P File CLASS on the CRAY-1. The timing numbers are from code CYCLES. H

ZVSEEK is a BASELIB function designed to find a target value in an
unorJdered list., The criginal version was written abocut a year before the
LLNL machine arrived and has since been upgradsd by use of timing analysis to
run moere than twice as fast. Mest of the spesd increase was obtained through
a sinmple algoritkm change! replacement of a logical vector instruction by a
fixed add, Howvever, an additiormnal healthy gain came through improved
harndling of the vector looping technigue. The main loop of the original
rouvtine consists of 10 instruccions.

oin Loop of ZVSEEK (31d Version),

This version prestores the target at the end of the search array, so
that it must eventually exit on a hit.

Timing of original version: VL = 64,

Comment

0 9 - 68 73 Get next 64 values
Q 13 73 77 77 XOR wach with target
77a ~b 141 145 147¢c Check for hit
147c 148 VM to S for count
148 149 VM to 8 for test
149 152 Count left zeroes
(naeded if hit)
151d 156 Exit if hit
153 155 .LGC. of next 64 values
154 156 Up AS by €4
155 160e Go check next 64 values
Notes:

a. Since the VM is zet by the logical functional unit, this instruction,
which also uses the logical unit, delays until the unit is free and does

nat chain.
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The vector mask instruction never chains its output to anything.

While another logical vector operation using the VM-register could start
at cvcle 145 (for example, m2rge), the VM cannot be read out to an
S-register until two cycles later (see the CRAY-1 Hardwarse Manual,

p. 4-69 or page 122 of the online version, LLCSD-158). Thus, we record
147 as the register free cvcle.

d. This instruction is delayed che cycle since SO has not been ready for the
necessary unused cvcle.

e, As written, this loop in taking 160 cycles for each 64 elements searched.
Improved Version with XOR Roplaced by Fixed Subiract

Addrass Instiruction I c 9] F R Comments
.64 VO , A0, 0 =] - 68 73
AO AS+AG 1 3 No reason to wait
Vi S$4-V0 ] 14 73 77 78 Subtract each from
target
AS ASTAG 10 12 Get it out of the way
VM V1,2 14F - 78 82 84
SO VM 840 85
S1 VM 85 86
Ad ZS$1 86 89
JSN HIT 87 Q2
L&4 89 94h
Motes:
f. Since the fTixed subtract was used in place of the logical difference, the
vector mask instruction can now chain its input operands.
d. Exchanging the order of the VM transmits to S8 saves a cycle later on.
h. The loop is now performing the same service as before but using only 94

cycles for each €4 elemasnts searched.

Thie latter loop represents approximately a 40% improvement over the
former ., However, because: (1) no functional unit is usaed for more than 68
cyclaes, (2) no register is used for more than 73 cycles, and (3) there are
plen;glof unused registers, one would expect that additional savings may be
poasible,

Ancother item that should be taken into consideration is that this method
is rather inefficient for those gearches in which the target value is found

..42_



in the first portion of a sat of 84 elsments searched. For example, suppose
the list we are searching has 64 entries. On the averagse, we would expect to
find the target value in the first half of 1the list as often as in the last
h&l£J but Fgr all these cases, the loop a3 writiten will require the full list
te b2 tested.

In fact, there is a clever (almost herocic) method available which can go
through this particular search loop in exactly 68 cycles per 64 elements
searched. The treatment below, however, is somewhat easier to code (and
debug) and offerse an improvenent in the time used to find the target over
even the harcic methaoed, on the aversge, for searches up to 512 in length.

The main tricks emplovad are! (1) breaking the array into vectors of
length 82 eanch; (2) replicating the loop but using a different set of
V-iregisters for each half, (3) loading and subtracting @ second set of 32
elemants while waiting for the VM instruction for the first 32 to finish, and
(4) loading extra unnecdad 21lemernts in the first half of the loop and using
an othervise unneedasd veoctor operation in the second half to maintain the
coirrect timing so that the load-subtract-VM chain will not be broken.

The timing chart for the main loop is given below. The notes following
are roeferenced by line number,

Address Instruztion [ c (5] F R
; First half of main loop
3 A2 35
4 AS ADDRESS
g sS4 TARGET,
7 .64 AO AS 0 2
8 VL0 AZ 1 2
< VO , A0, 1 2 11 - 41 46
10 AB 32 3 4
11 S6 AB 4 6
12 Vi A6 S 6
13 AS Ad 6 8
14 \'al $4-V0 11 16 43 a7 48
15 Si VM 15 16
16 VM V1,2 16 - 48 52 54
17 S0 S1 17 18
18 A4 Zs1 18 21
19 JSN HIT 20 25
20 SO S6-83 22 25
21 AB 32 23 24
22 AS AB+AB 24 26
23 §3+S6 25 28
%4 JSP DUN 27 32
5



Second

half of main loop

0 AS

2 , A0, 1
3 S4-va
4 15

1 VM

M V3,2

0 S1

L A4

4 281

0 VB<AO
Sid HIT

0 56-83
5 AS+AB
3 88-356
4 32

SM L64

> AS-AB

87

74

77
86

91

78

82
87

93

80

Notes

Line

line

Lime

Line

L.ine

Line

Line

Line

30.

Althaough we
load 35, Th

Since there are 35 eloments being

Now we cut the V0L back to 32.
is perfectly safe.

midrile of o

cha ining can
de:
interrupts,

The chain continues,
cycle ©2, while the VM

When we reac

unit is free
We choose no

The fixed acl

are only going to check 32 elements,
¢ reason for this will

ahain

lead to wrong answers (i.o,

nding on external happenings such as

and oparands out of range’.

itself

appoarr at line
loadad,

Reducing the vaector
However,

increasing

33.

F = 2+35+4,

length i

we take care to

n the

it while

, the answers may differ

178 activity,

system

with the functional unit becoming free at

is not transmittable to S1 until 54.

" here we are simply waiting for the previous vector
masl. instruction at line 16 to finish.

Since the

memory fu

nctional

, we may as well start to load the next 32 eclements.
1 to lecad 35 elements this time.

der is also free s0 we may as

subtract at chain time,

well start the next

We must rescue the previous VM register setting before we can form

a hew one.

The cycle following the move of the VM to S

which we can

Cycle 54

starm

& Nnaw

VM

instruction,
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Line 35.

Line 7.

Line 38.

Lines 37

Line 43,

the chain cvcle for the subtiract at line 30, so the chaining

cont inuass., Not ice what would have happened if we had loaded only
32 elaments at line 9. First, for that instruction, the functional
unit would have gone free at cycle (38. Sacond, the load at line 29
would lave then Degun @t cycls 38. Third, the subtract at line 30
would have chained et cycle 47. Finally, the VM at line 33 would
hava missed the chain ovele (82), sincz we had to hold it up for
the move of the olde VM Lo S1. Thus, it would not have issued till
cyocle 87,

But since the loop will normally continue back to the VM at line
16, and since we have not loaded 8% ele@ments this time, we must do
something o holca I the load at line 9 in the next pass, or the
VM at lime 18 will i miss its chain cycle.

Hera we start to pull another trick, which will delay the load at
ling 2 in the next pass ard gt the same time protect this loop
against o problam (in timing, not corireciness) that may arise if
there is an interrupt during its execution. The protection is free
in terms of the cycles required to do it, but it does require extra
instructions.

This is the protection instruction. Since it is putting 15 results
into VYO using the shift functional unit, which has a chain time of
6, it will tia up register VO until cycle 80. This in turn will
cause the next lead at line 9, which uses VO, to be held until

cycla 80, This is the exact cycle desired, since it will bring the
chain cycle from the subitract at line 14 to cycle 94, the cycle
immediately after ths: one in which we can first save the VM (93),
At the same tTime, ragardless of whether or not some interrupt has
come along and boliixed our careful timing, this will force the
next load (at line 93 to hold long enough relative to the previous
VM so that we will ke back in synch thereafter.

In this program address HIT has already been put into an
instrucrtion buffer. If this were not the case, the jump would
complaete at cycle 91,

through 40, . .
Segveral instructions are complating in cycle 65; each uses a
different register set.

After jumping back, we will be holding at line 8 for the completion
of the instruchion at line 37. The loop time will be 78 cycles for
each 64 clemanits tested, but, on the average, we will exit in the
upper half of the loop half the time, which provides a further
spead increass, especially valuabla foirr shori arrays.
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QvDIVvO

another erxample, we present the coding for QVDIVO, the CRAY-1
STAChlIB divide routine.

On thae CRAY, the vector divide algorithm used to accompllsh the FORTRAN
vector statement G = A/B, where A, B, and C are vectors with arbitrary
(linzar) strid. Pequlrﬂb thrae vector memery operations, thiree vector
mulrip}y ions, and one vector raciprocal approximnation instruction for
ench 64 e

Th=2 csurrent CFT implementation of the genseral vector

divide loop redguires 445 cycles per 64 elements stored plus some startup
time, which brings tha 2ozt for such a divide to roughly 7 cycles per

elemant . Howaver, by overlaving the storing of the result for the first pass
through the loop and the leading of tha operands for the third pass through
the loop witih the multiplying still being carried out for ithe second pass,
ore n expect to achieve scomething on the ordsr of twice CFT’s performance.
In t, the theoretical minimum, 2095 cycles (88 + 68 for loads + 69 for

stor per 864 elaem ts lafier suitekle startup time) is achieved in this

routine. The ciming ~hart for the main loop is given with notes below.

Line Instruc I c s} F
-3 ve Va*lVl -137 -128 -73 -69
-2 V4 VI*FV6 -64 -55 0 4
-1 AO 85 -63 ~62

o] JSP TWITRIP ~62 -48

% BUFFETR BOGUNDARY
1 va ,AO0, A5 -48 -39 16

2 LP VL A4 -44 -43

3 A3 ABXAT ~43 -37

4 S3 A2 -42 ~40

S A SO+V5 o] 5 64 68
6 S$3 33<8 1 3

7 sz S3+82 3 6

8 Ve VZx1V1 5 14 69 73
] S3 A3 6 8

10 S5 S5+83 8 11

11 AQ S5 11 12

12 Vo , AQ0, AB 20 29 - 88
13 VL A7 21 22

14 V3 VI*xRV2 73 82 137 141
15 VL Ad 74 75

16 AQ sz 75 76

17 V7 ,AO, A2 88 97 - 156
18 V5 /HV7 Q7 113 161 165
19 va VO&VO 137 141 201 205
20 V4 VIXFV8 141 150 205 209
21 VL A7 142 143
22 AQ S6 143 144
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23 A3 ABXAT7 144 150
24 ,AD, AB V3 156 - 220 225 -
25 S3 A3 157 159
26 S0 S1-84 158 161
27 S1 St1-84 159 162
28 M7 A 160 162
29 S$7 sS4 162 163
30 S6 8S6+53 163 169
31 JSN LP 164 169
Notas
Line -3. We choose to besgin the timing chart somawhat before the loop. We
he to start thoe timing somevwhere. Arbitrarily, we may take the
St 3 QF this instruction as any cycle, Cycle -137 will be
convaniant.
Line -2. At this point, it is clear that the state of the machine prior to

line -3 will have no effect on the issue time of this instruction.
(Actually, & vector reciprocal instruction whose result register
was V4 could still be in progress and would delay this issue by a
few cycles. but that is not the case.)

Lines 0 and 1.
The jump here to TWITRIP is not taken. However, a 16-word buffer
boundary (20 ocial) occurs after th2e JSP instruction, and this
delays th2 next instruction until the rnew buffer can be loaded from
MSmory . Notice that the time of issue of the instruction at line 1
after the buffer load is the same as it would have been had a jump
been takoen to it.

Line 5. This move instruction is the first vector instruction in the loop.
We have arranged to make it issuse at cycle 0. [t will wait to
iss until V1 has delivered all the operands for the multiply
instruction 2t lina -2.

Line 8. This multiply chains with the fixed add (move) at line 5. We have
insured chaining by delaying the move long encugh to have the
multiply functicnal unit free from line -2

Line 12. This load will issue as soon as the previous one at line 1 releases
the memory (cycla 20),

Line 14, v2, V3, and V4 have bheen available for many cycles before this
instrustion can issue. It has to wait for the use of the multiply
unit, Note =lso that the A-register multiplies do not interfere
with the flostirg-point multiplies since they are done in a
separat functiocnal unit.

Lines 17 and 18,
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Line

lline 2

Lines

% 3% %

24.

These instructions chain.

This is another move instruction. The release of VO by this
irstrustion determines the length of the loop (205 cycles).

This does not ¢
141 beomusae it
when,

@ain with the move at Line 19. It issues at cycle
@t et at the multiply unit Ffrom line 14 before

This is the final store instruction. It is released for issue by
the avai mility of the memory from line 17. The memory functional
i & :harmines the time for the loop since we are using it

Ffor GoiES.1] 205 cvcles.

The fellowing is & timing and accuracy test for QVDIVO:

LDR

FCFT 1=TESTAQVD,ON=6,B=RQAVD, C=C00
[=(BC/DIV,BEQVD) , XaXBVD, ORDER=CL.MNB, FIRST=BAVDIV

AV

COMMUMN  /ZQVCOM/ X (48000),W(48000),U(48000),2(48000)
CALL LIMK( UNITSS=(TTY,TEST)// ")

DG 3 L = 1,12000,64
Da 2 1=1,3xL+1
Z(1) = 4+L
2 Ul = 4+
K = IRTC(O)
CaLL QvDIVO(W(1),U(1),2(2),L,4,3,2)
N = IRTC(O)
N = N-K
K = IRTC(O)
DO 1 I1=0,L-1
X(4xI+1) = U(3xI+1)/Z(2%x]+2)
1 CONTINUE
M = IRTC(O)
M = M-K
DO 4 [=0,L-1
[F(XxI+1) ME. W(4xI+1}) GO T 5
4 CONTINUE
WRITE(S2,80) LL,M,N
80 FURMAT(1&,2186)
E

)
4), (X(1),I=1,4xL-3,4)
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QVSQRTH

Ve conclude cur examples with the cods for QVSARTH, a half precise
(ZE-bit-ascurate) sguare root rautine for arrays, available in STACKLIB. The
ooision ro ine QAVEART is quite similar, requiring one additicnal
ion but needing, also, a full precisicn divide during this final
iteration. The code is perbaps remarkable in that maximum speed is obtained
by breaking the sirray up into vectors of length 31, and because every vector
tion is chainad o the previous one. A total of 21 consecutive chained
s operat ions ocour,

Essentially, the idea is to compuie an initial guess X0 and then to
ite 2 threo times by the formula: Xi+1l = (Xi + ¥Y/Xi)/2, where Y is the
numkb2r whese squars roost is desired. The iterative loop can be managed by
the four CAL instrucstions:

VO /HV1
V2 VOxFV3
V4 V2+FV1
VS S4+V4

The halving operation is performed by adding minus one to the exponent.
Chaining will end for long vectors at the (¥F) instruction since there will
be & conflict over the use of register V1. Howover, by adding one auxiliary
NG -GF instruction (& shift of zero), we can achieve the following timing for
vectors of length 31, since the +F is delayed until V1 is free.

I c v] F R

VO  /HVI1 0 16 31 35 47
V6 VOxFVY3 16 25 47 51 56
V2 VB>A7 25 31 56 60 62
V4 VZ2+FV1 31 39 62 66 70
VS S4+V4 3¢ 43 70 74 7S

Mow, at cycle 43, we can issue another reciprocal cperation (to register
V7)) and continue the procedure without ary breaks in the chain. Moreover,
since the initial guess can be generated by a similar set of chained
operations, ithe entire calculation may proceed from the initial leoad, with
each succeszive vector instruction issuing at the chain cycle of the previous
one. (In the full-precision reutine, the chain is broken during the
caloulation of the full-precision reciprocal.)

The timing ochart for this half-precise square t is given next (for

roo
the maoin loop). A full iteration kbegins at label 1TER. The complete routine
is available in file CLASS,.
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NOL3ED

ITER

RTMNZ

vS VOXFV1 0
43 VO>A7 9
A7 24 10
A7 VE+FV7 15
AQ Al1+A7 17
A7 A7-A6 18
V3 S5+V2 23
S0 +A7 24
A7 ~A7 25
S7 VM 26
V4 /HV3 28
JSP NOLOD 29
V0L A7 31
VO , A0, A3 32
VM Vo, 2z 41
VL AB 42
v5 VAxFV1 44
A7 0 45
VO VS>A7 53
S7 S6&87 24
A7 AGXA3 55
32 VM 56
Ve VO+FV3 59
s2 s$2>24 60
s7 S$2!87 62
VM S7 63
Al A1+A7 64
va S41VEe8&VM 67
AQ ABG-AD 68
A7 AGxA4 69
AS AS-A6 70
V7 55+v2 71
JAP DUN 72
AO 6-A5 74
JAP SHORT2 78
Al 1 80
AOQ Al 82
V1 ,AO, A3 84
VO S1%FV1 93
Ss2 >2 94
sS2 sS2>15 a5
V2 S2!VvO0 102
V3 V2>A0 106
AO 2 107
A2 A2+A7 108
V4 S3+VY3 112

/HV4 117
,AD, A4 V7 118

59

39
48

75
84

Q0

o8

102

N—
nO

W
N

———
EENANEAN
oW

63

43
52

79
88

94

102

1086

—_—
[N
[e22(4]

d__.
DO
=

98

102

107



173
167
179
187
182
208

168
165
7
8
9
9

MANN
NNOOY
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APPENDIX A AN ABRIDGEMENT ©F THE SUMMARY dJF CPU TIMING INFORMATION
FURNISHED BY CRAY RESEARCH INC.

When issue conditions are satisfied, an instruction completes in a fixead
amount of Time. Instruction issus may cause reservations to be placed on a
functional unit or registers, Knowleadge of the issue conditions, instruction
exgcution times angd reservations permit accurate timing of code sequences.
Memory bank conflicts due to 10 activity are the only clement of
unpradictability.

SCALAR INSTRUCTICGNS

Four conditions must be satisfied for issue of a scalar instruction:

1. The functional unit must be free. No conflicts can arise with other
scalar instructions. However, vector floating point instructions reserve
the floating point units. Memory raferences may be delayed due to
conflicts,

2. The result register must be free.

The operarnd register must be free.

4. Issue is delayed 1 clock period if a result register group input path
conflict would exist with a previously issued instruction. gne input
path axists Tor oach of the four register groups (A, B, S and T).

Scalar instrustions place reservations only on result registers. A
result register is resorved for the execution time of the instruction. No

reservations are placaed on tha functional unit or operand registers.

A transmit scalar mask instruction to Si (073) instruction is delayed by
(VL) + 6 clock pe ‘ firom th2 issue of @ previous vector mask (175)
instruction, and is delayved by 8 clock paricds from the issue of a preceding
tramcmit (8§) to VM (O032) instruction.

Executior timz2s in clock periods are given below. An asterisk indicates
that fssue may b delaved bocause of a functional unit reservation by a
vector instruction, Memory may be considered a functional unit for timing
conzidaerations,
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(A=p

“rogistaer, M=Maemoery, B=B-repister, S$=S-register, I=Immediate,

C=Channael, T=T-register, V=V-register, % see previocus page)

2d-bit results:

A<--M 11x% A<-=-C 4

M< -~ A 1% A<--AA 2

A<--B 1 A= -PAxA 6

B<-~A 1 A<~ ~pop(S) 4

A<--S 1 A<--1zc(S) 3

A<--1 1 VL<--A 1

E4-bit results:

Sa<--M 11% S<~-8+8 3

M<--8 1% S<-S(f.add)sS 6%
S<--T 1 S<=-~8S(Ff. mulel)S 7x
T<-~-38 1 S<--(r.&.)8 14x
S 1 S<--V 5

S 1 V<~--8 1

S5< 2 S<~-VM 1

S 3 S<-~-RTC 1

S 1 S<--A 2

R’ 1 VYM< - -8 3

Vector Instructions

-

fNA]

for

Four concitions must be satisfied for issue of a vector instruction:

The functional unit must be free. (Conflicts may occur with vector
sparations. ) .
The result register must be free. (Conmflicts may occur with vector

operations. ) . .
The operand ragisters must be free or at chain slot time.
Memory must bo guiet i¥ the instruction refarences memory.

Vector instrucﬁiohs place reservations on functional units and registers
the duration of exacution.

Functional units are ressrved for (VL)+4 clock periods. Memory is
reserved for (VL)+5 clock periods on & write operation, (V0L)+4 clock
periods on @ read operation.

The result register is reserved for the functional unit time +(VL+2)
clock poriceds, The result register is reserved for the functional unit
+7 clock periods if the vector length is less than 5. At functional unit
time +2 (chain sleot time)! a subsequant instruction, which has met all
other issue conditions, may issue. This process is called "chaining."
Several instructions using different functional units may be chained in
this marner to attain a significant enhancemant of processing speed.
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3. Vaector operand registers are reserved for (VL) clock periods. Vector
opersand rogisters are reserved for § clock periods if the vector length
is less than 5. The vector register used in a block store to memory (177
instruction) is reserved for (VL) clock periasds. Scalar operand
registers are not resoerved.

Vector instructions produce one result per clock period. The functional
unit times are given below. The vector read and write instructions (176,
177) produce results more slowly if barnk conflicts arises due to the increment
value (Ak) being a multiple of 8. Chaining cannot occur for the vector read
cperation in this case.

O If (AK) is an odd multiple of 8(x), results are produced every 2 clock
periods. If (Ak) is an even multiple of 8(%), results are produced every 4
clock periods.

Memory must be quiet before issue of the B and T register block copy
instructions (034-037). Subsequent instructions may not issue for 14+(AiQ)
clock pericds if (Ai}.NE. O and 5 clock pericds if (Ai)=0 when reading data to
the B and T registers (034,036) . They may nhot issue for 6+(Ai) clock periods
when storing data (03%,037).

The B and T register block read (034,086) instructions require that
there be ne register reservation on the A and S registers, respectively,
baefore issue.

Branch instructions cannot issue until the A0 or SO0 operand register has
been free for two clock periods. Fall-through in buffer requires two clock
per iods., Brarch-in-buffer requires five cleock periocds. When an "out of
buffer" condition occurs the exscution time for a branch instruction is 14
clock periods. (18 clozk periods for 8-bank phasing option.)

A two parcel instruction takes two clock periods to issue.
Instruction issue is delayed 2 clock periods when the hext instruction
parcael is in a diffaerent instruction parcel buffer. Instruction issue is

dolaved 12 clock periocds if the next instruction parcel is not in an
instruction parcal buffer.

* Multiple of 4 for 8 bank phasing option.
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HOLLD MEMORY

A delay of 1, 2, or 3 CP will be added to a scalar memory recad if a bark

conflict

occurs with rank C, B, or A, rezspectively, of the memory access

network . A conflicit occurs if the address is in the sams2 bank as the address
in rank ¢, B, or A, Conflicts can occur only with scalar or 1/0 references.

The scalar
The scalar
issue time
CP. The

instruction senses the conflict condition at issue time + 1 CP.
instructicon address enters rank A of the memory access network at
+ 1 CP. The scalar instruction addrass enters rank B at issue + 2

ascalar instruction address enters ranmk C at issue + 3 CP.

Scalar lead instruction timing (no conflict):

CP n

CP n+ti
CP nt2
CP n+3

cP
CP

)
= v

N
-O

Issue, ressrve register
Addrass rank A, asense conflict
Addr rank B

Addiress rank ©

Clear register reservation .
Cemplats2 and issue waiting instruction
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B
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AFPENDIX B. WHAT HAPPENS WHEN YOU RUN OGN THE CRAY?

You type your LEGON at a terminal; then: (Xx)

1. The LGGON line goes to the COMBO checker, which verifies it, appends some
bits of information and sends it on.

2. The lins next arrives at the TMDS concerntrator, which notes that it is
destined for the CRAY and routes it to tha A410.

3. mpe Ad10 performs the sppropriate protocol and drops the line onto the
NEC bus.

4. The A130, which is attached to & CRAY channel, picks up the line from the
bus and sends it malong the CRAY channel to an LTSS memory buffer.

5. LT8S, which is frequently polling all CRAY channels, notices the
activity, sess that this is & LOGON line, and verifies that you are an
authorized user.,

6. LTSS then prepares an index of private ard public disk files to which you
have azcoss and @ssociates it with your user number.

7. LTSS returns an appropriote acknowladgment of vour LOGON and sends it on
the reverse route toe your teletype.

The acknowledgnert response and all subsequent message lines bypass the COMBJ
chackear ., In fact, if wthae COMBY checker was down at initial LOGON time, the
LOGON lineg would go direstly to the TMNS conanrmtrator.

x  For the MFE natwork, replace items 1 through 4 above by the following:!

M1 . The LLOGEN line ¢oes via a modem and telephone lines to a VADIC modem
multiplexor, which sends it on (or it may go directly to step M2).

M2. A PDP-11 concentrator then notes that it is destined for the CRAY and
wouge? the line to a 7800 FPPU (12). (In the future, another PDP-11 will be
usead.

M3. The PPU performs the nocessary protocol and sends the lines to the

CRAY -7600 Adaptor. . .
Md . The adsaptor, which is attached to a CRAY Channel, picks up the line and
serds it along Lo a CTSS mamory kuffer.
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Next, yvou type in an EXECUTE line, say, CLASS /7 1 .7, which goes to CRAY

LTSS,

1. A search is made of your private file index to determine whether you have
a file by thz2 name of CILASS

2. If not, a search is made of your PUBLIC file index %o see if it has a
file by that name.

3. If not, the message "NJ FILE" is sent te your terminal.

4, When CLASS is found, your PRIGRITY is checked (V/TL = .7), and if
necessary, changed to conform to the current limits, or, if your account
has no time laeft, achangad to 3§ (standboy).

5. The job is than assigrnaed to an appropriate loading queuse and, when memory
space is available, a numnber of words equal to the load length of this
file is brought into memory.

6. When the file is in mamory, LTSS paerforms a sequence of validity checks
on the minus words, If anv check fTails, an appropriate message is
returned to your terminal, and execution ceases.

7. If all seams well, the job is placad in an appropriate queue and
schedulad For CPU Cine.

8. Wren the propor time arrives, LTSS relinquishes control of the CRAY CPU
o vour peogram by exchanging from MSNITOR to JOB mode, putting the
o nts of yvour minus words inteo the CRAY registers, and requesting the
16~word bufie -load of instructions containing the instruction addressed
by wvouir pogram counter to be fetchad to an instruction buffer.

9. Fimally, then, the first instruction will be performed and the program
counter advanced to the next instruction.

10. In general, your program centinues in control of the CPU until it makes a

recognized error, gives cortirel back to LTSS, or is interrupted by LTSS.
Howaver, while it (s in control of the CPU, LTSS may have on-going 1/0
activity, which will share the use ¢f memory with your program,
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APPENDIX C. THE DETAILS OF INSTRUCTION FETCH TIMING

All this detail is incorporated in the code CYCLES.

. There are essantially five registers to consider, a few flags and a few
time pesitions.

i BOO (<-=-=>] P 1<==1
TTTTTTT YT i
L} 1 L}
[ L
:
H
)
E Irstruction E i
i Buffers E -------- >E ILATCH i->i NIP E->E CiP E
; ; L S SRR S SR
i H H i
________________ ! —————>
E Execution
‘--->1 LIP R >

An instruction which izsuss at cycle x must have entered the CIP at
cycle x-1 or bafore, the NIP at cycle x-2 or before, and the I1LATCH at x-3 or
before. Somea time prior to cvecle x-8, the instruction must have been located
in ene of the four Bd-parcel instruction buffers, and before that, it was in
memaory.

In general, instructions coming frcm the instruction buffers are able to
reach the CIP at a rate of one per cycle; however, when the end of a buffer
is reachad, delays are oncourtered in lecating The next instruction to be
procassed, Similarly, whenever Branch instructions cause the orderly flow of
senuantial instructions toe be interruptsd, delays are to be expected.

The chart (pages 60-61) illustrates details of the flow of instruction
parcels in the CRAY-1, Registers invelved in this flow are described in the
"Instruction Issue and Control" section of Chapter 3 of the CRAY Hardware
Reference Manuval .

. In general, the P register is incraemented by one each time an
instruction is issued. I¥f the instruction parcel correspording to the new P

value in saguencs is ir the current instruction buffer, then that parcel goes
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to the [LATCH register during the same cycle. I1f the parcel is hot in the
currant I -buffer, then the TLATCH INVALID flag is set.

I the required parcel is not in any I-buffer, then a memory instruction
fetch request (IFR) is issusad. Normally, four instruction words (16 parcels)
including the requirad parcel will arrive in the next 1-buffer eleven cycles
afttaer the 1FR. I+ memory is alroady busy then the IFR must wait. The other
twelve instruction words to fill the [-buffer will be requested in groups of
four during the next three cyclas, The reguired parcel reaches I[LATCH in the
same cycle it reaches the | -buffer. I -buffers are loadz2d in strict rotation
regardless of when the buffer was used last.

If the required parcel is already in a different 1-buffer, then CHANGE
T is set and on the following cyale the current [ -buffer designator is
v The corraect parcel will reach TLATCH on the following cycle, two
cyclaes delasyved,. A jump within the current |-buffer takss as long as a jump
to a Aiffarernt 1 -buffer.

An instruction issues from the CIP (current instruction parcel)
register., Tha szcond parcel of a two-parcel instruction issues from the LIP
(lower instruction parceael) register. In the same cycle a new parcel moves
into CIP from the NIP (next instruction parc2l) register unless blocked by
the TPE (two parcel split) Flag. The TPS flag is set whaen ILATCH is invalid
arc NIP cortaimns the first parcel of a two parcel instiruction. (17d)

In the same cycle that a parcel moves from NIP to CIP, a parcel moves
from TLATCH to NIP wrless blocked by the TLATCH INVALID flag described above.
I[f NIP contained the irst parcel of a two pAarcel instruction, then the
parcael in ILATCH goses o LIP instead, and a NOP is placzd in NIP.

With thesa rules we are now ready %o use the chart below which
illustrates the cycle-byv-cyeclae progress of instruction parcels for the
follawing code soguence:

acidr parcel CAL mn=2monics

17a Q72700 s7 rt
17k Q20100 al two
17¢ Qeuo02

*xrepaat 1
17d Q31110 al al-1
20a o30001 at al
20k G11000 jan x-2
2Qc [a]elele biyg
20d 072600 s6 rt
21a GO40G0 ex

Two = 2

@

s



reg

shows

Asaume that completion of an exchange sequence results in setting the P
17a in cvcle

Lo b

IFR me

ars "instruction fetch

= nip anttry kblocked because
irrelovant

[FR

cdeta.,

words

cycla words ready

1
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nip
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20b
nop
nop
nop
nop

17d

20a

recguest"”

(lip)

0

0000

NN
[ I I N To Yoo R N I R T N T T A N T A O T O Y RO S O B R A |
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y issued for these words. X column
invalid data in

ilatch.
instr.
cip issued
17a -
17b 17a
nop 17b
17d nop
- 17d
20a -
20b 20a
20b -
20b -
20b -
nop 20b
- nop
17d -
- 17d

- means invalid or

comments

IFR for 14a-17d
(ready in I-buffer
11 cycles after
memory request)

waiting
for
instructions
to
arrive
from
memory
11 cycles after [FR

s7 = rtc at this cvcle
IFR for 20a-23d

al now set to 2

al-1 to address adder

al now set to 1
waiting for
instructions
to
arrive
from
memory
11 cycles after I1FR

O+al to address adder
a0 ready (=1)
a-branch flags set
17d goes to p-counter
change buffer request

al-1 to address adder



- - - 20a -
42 - - 20d 20d nop  (20¢) 20b 20a O+al to address adder
43 - - 20d 20d nogs (20c) 20b -
44 - - 20d 20d nop (20c) 20k - a0l ready (=0)
45 - - 20d 20d nop (20c¢) 20b - a-branch flags set
46 - - 2la 2ia 20d - nop 20b (drop through)
47 - - 21b 21b 21a - 20d nop
48 - - 21c 21c 21b - 21a 20 sB8 = prtc = s87+33
49 - - 21d 21d 21c - 21b 21a exit
oyvele notes

words 14-17 are roguasted from memory.

words 14-17 reach [-buffer 0 and parcel 17a enters [1LATCH.

parcel 17a& issues fourteen cycles after beoing regquested from memory.

17k issues ond p cal 20a (words 20-23) is requestzd from memory.

In gernaral, the next buffer is reguested whan 17k issues from the

ald buffer. I¥ 20a is not in an 1-buffer then it will be ready to

i aftar fourtoon morae cycles, unless further delayed by memory busy.

O= issues fourteen cyvcles aftar 17b issued and 1FR.

ister aftz0+al is roady. The result is sant to the AD branch flag

st ing unit., This would not delay instruchions other than jump

on A0 instructions.

3% the A0 bLrarch flags are set.

34 now the Jump on A0 Non-zero can issus which resets the P register.
A Jump to a parcael already in an [ -buffer tuakes 5 cycles for the target
parcel to issue.

37 parcel Z0a is recuasted when 17d leaves 1LATCH. 20a is in an I-buffer
and will be in ILATCH in two cycles.

39 target parcel 17d issuses and 20z reaches TLATCH.

42 parcsl 20a issues as in cycle 30.

46 JﬁN insues but this time the P register is not reset and we drop
thirough.,

48 the real-time clock reading would be 83 cycles greater than cycle 15,

ot
[GIoRVEY]

CYCLES' output for this code sequence:

loc instr res operand w b delay i c [e] f r
00N17a 072700 s7 rt A20000 15 16
00U Zk: 0201 00000002 &l two 16 17 2=al
ouN17d G31110 &l al-1 18 20 1=al
00020a Q30001 an al 11800204 30 32 1=a0
0C0zak: 011 9CroOnNi7Zd jan 17d 3 00100 34 39 a 39 48

Jump back teo ropest at 17d

00017 031110 al al-1 a 39 41 O=al
0002 G300017 a0 al 200204 42 44 0=a0
0OG20k: C11 2009200174 jan 17d 3 00100 46 51 a 51 60
QUO2:0¢) 072300 86 rt 48 49
QOG22 1o Q04000 ax 1 02000 50 100
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TTY input to CYCLES for this example:

cycles tty htty.
pl17a ¢c18 72700 20
pl7a 31110 30001

11 30001 11000 77

o] 31110
1 77 72600 4000 end

0 2z
000

—_—

Summary

Instruction look ahoad is effectively three parcels (CIP, NIP, and
ILATCH) . Whern instruction 17b of & kbuffer is issued, the Tirst parcel (20a)
of the rext [-buffer load is sosught. 1f parcel 20a is =already in an [-buffer
then it is delayed only 2 cycles; if it is not in a buffer, then it should be
ready to issue fourtecn cycles after it was reguested (ie. after 17b
issued) . The request is delaved until memory is not busy. After the request
is acceptad memory is busy for six additional cycles.

Ther:z are Tour excspiional casss to consider!

1. I£ 17¢c is a branch instruction, then the instruction fetch request (IFR)
is delaved until the jump =ddress is decided. The address is decided in
the jump issue cycle except for "J Bjk" in which it is decided two cycles
later.

2. If 17c is a scalar load or store which issues immediately, then it gets
memory service first and the imstruction fetch is delaved four cycles.

3. If 17¢c iz a vector load c¢r store or a block register transfer and_it
issues immediately, then the instruction fetch is delaved until 17c is
cdone with memory. The delay will be VL+d for a load and VL+5 for a
store.

4. If 17¢c is a one parcel instruction followed by a two parcel instruction,
then if 17¢ does not issue immediately, it will be held from issue until
the second parcel of 17d razaches 1LATCH. The hold is caused by the
setting of the TRS (two parcel split) flag after 17d resches NIP.

The follewing seduences, which differ only by the second instruction
issuad (at cvele 2 or 1), illustrates this effect:
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loc instr res operand w b delay i c <] f r
00017a 061106 s -56 A 0 3
00017k 054521 s5 85<17 1 00020 2 4
001 7c 070210 s2 /hsi 3 17
00017« 1305 ON01H000  106G000H,0 85 11B00Q2090 15
OCONZ0h 064432 s4 a33xfs2 17 24
oo0Z0: 1304 0010001 10001b,0 s4 6 00004 24
loc instr res oparand w b delay i c o £ r
00017 0611086 51 -s6 A 0 3
00017k S425%21 s5 <47 1 2
00017¢ 070210 s2 /hsi 11 00204 13 27
000174 1305 Q0UOTON00 10000L,0 s5 B 14
00020 0&4432 s4 s3xfs2 11 00004 27 34
00020c 1304 00010001 10001b,0 s4 6 00004 34

In the first case, parcel 17b was delaved one cycle by an S-reg path
conflict, so parcel 17c was able to issue immaedistely and beat the TPS hold.
In the second case, parcel 17b had no trunk conflict and issued on cycle 1.
Parcel 17c was, as baefore, reacddy to issus on cycle 3, but by then the TPS
hold was on. Thus, 17c¢ had to wait for 2Z0a to reach ILATCH before the hold
was released permitting it to issue.
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