
 

CUG 1995 Spring 

 

Proceedings

 

 

 

 

 

93

 

CRAY T3D Experiments with I/O

 

R. Kent Koeninger, 

 

Cray Research, Inc., 655F Lone Oak Drive,
Eagan, Minnesota 55121

 

ABSTRACT

 

: 

 

This paper shows I/O techniques and results on CRAY T3D systems.  

 

1 Introduction

 

In this paper I review the three phases of CRAY T3D I/O and
give likely results of mixing phases I and II.  I give general ruses
for optimizing CRAY T3D I/O and show actual results from
several sources.

 

2 Three Phases of I/O

 

All CRAY T3D systems in the field, as of this CUG, use
phase-I I/O exclusively.  Some sites will begin using phase II in
the first half of 1995.

Phase I is the most general-purpose and easiest-to-use
method of I/O.  Most sites should use phase I, when they can,
reserving phases II and III for configurations where phase I will
not work.  

Phase I copies all data through the host.  This buffering in the
host supports using any buffer size and any address for the I/O.

Phase II is useful with two processor hosts and with four
processor hosts attached to   MPPs with 256 or more processors.
In these cases, one cannot use general-purpose phase I for every
available MPP I/O gateway.

Phase II sends the data directly between the I/O subsystems
and the MPP, bypassing the data buffering in the host.  This
improves the individual packet transfer performance, but not
necessarily the overall system I/O performance.

Phase II requires special application code to align the data
buffers on 8 word boundaries and requires all buffer lengths to
be multiples of the disk sector size.  This is called
“well-formed” I/O.

With phase II configured, well-formed I/O will use the
phase-II path and other I/O will use the phase-I path.  Splitting
the load between these two I/O paths is likely to lower the
overall bandwidth, when compared to using phase I exclusively
on the same number of channels.

The peak bandwidth of phases I and II are similar: about 130
megabytes per second (MB/s).  For medium size transfers (8
sectors at 4096 bytes per sector), phase II transfers are about
50% faster: 20 MB/s for phase I and 30 MB/s for phase II.  In
theory, by carefully mixing phases I and II, one can see band-
widths higher than using the same number of gateways for
phase I only.  In practice, maintaining this balance is rare and
using phase I exclusively usually yields higher overall system
bandwidth.

On the other hand, if a host will support only two phase-I
gateways, and the MPP will support four total gateways, config-
uring the last two gateways for phase-II I/O will increase the
aggregate I/O bandwidth for the system.

Phase III is used only when there are more I/O gateways on
the MPP than can be connected with phases I & II.  It allows a
connection to an I/O subsystem that has no physical connection
to the host.  This is useful for very large MPP installations or for
MPPs with two-processor hosts.

 

3 Optimizing CRAY T3D I/O

 

3.1 Minimize System Calls

 

Each MPP I/O system call requires over 2 milliseconds of
latency before the physical I/O starts and causes significant
system overhead on the host.  Bundling up I/O transfers into
large blocks can significantly increase the bandwidths and
reduce the system overhead.  The FFIO libraries can be used to
buffer data in individual processing elements (PEs), turning
many small logical I/Os into fewer large physical I/Os.

 

3.2 Disk Configurations

 

System level striped file systems provide higher bandwidth
for the general case where ASSIGN is not used, but are suscep-
tible to disk contention for parallel I/O because each I/O touches
every disk in the striped group.  User level striping allows
greater control to avoid contention, but provides lower band-
width by default (without an ASSIGN statement).Copyright © Cray Research Inc.  All Rights Reserved



 

94

 

 

 

 

 

CUG 1995 Spring 

 

Proceedings

 

System striped file systems increase the transfer rate on indi-
vidual I/O requests.  Using system striped file systems, a single
PE can sustain about 50 MB/s.  If many PEs attempt I/O to a
striped file system, the resulting contention can significantly
reduce the bandwidth.

The ASSIGN statement and user level striping allow the
programmer more control over how the data is blocked on
across multiple disks in a single file systems.  The programmer
can match the block size on the disk to the buffer sizes in the
application.  With care, each I/O will touch data on a single
physical disk.  This is useful for reducing disk contention when
multiple PEs perform I/O in parallel.  

Users generally don’t specify user-level striping for a
system-level striped file system.  User level striping works only
on multiple-disk, multiple-partition file systems.  If one uses a
unstriped file system without an ASSIGN statement, all the file
system access will be sequential with each file generally laid out
on one disk.  

 

3.3 Parallel I/O

 

A simple I/O coding method is to use one PE for I/O and let
it gather and distribute data to the other PEs using “gets” and
“puts.”  With this technique and a fast file system, one can
sustain 25 to 50 MB/s of bandwidth.

If one uses every PE for I/O in parallel, the contention on the
disks is likely to lower the bandwidth to below that of using
only a single PE.

If one uses one PE per physical disk, and each I/O touches
only one disk, then one can achieve near-linear speedups in
bandwidth as more disks are included in the parallel I/O.  Using
more than two PEs per disk tends to increase disk contention
and lower the overall bandwidth.

 

3.4 Host I/O Considerations

 

CRAY T3D I/O is UNICOS host I/O.  UNICOS I/O can be
optimized by using LDcached file systems and striped I/O.   File
systems taking advantage of these features tend to have fast
transfer rates.  

 

3.5 Agent Tuning

 

For each partition on the CRAY T3D, the host runs a process
called the Agent.  This Agent processes all I/O requests for all
PEs in the partition.  The Agent will automatically expand its
size to meet I/O demands, but it works best when initialized
with sufficient memory.  The MPP_AGENT_IO_MEM_MIN
environment variable controls the initial size of the Agent.  

The MPP_AGENT_PLOCK environment variable controls
how the process will be held in the host’s memory and how it
will be relocated and swapped to disk.  The default is
“delay_shuffle”, which locks the process in memory, but allows
the host to determine when to move the Agent to one end of
memory to avoid memory contention.  Another option is

“immediate_shuffle”, which will relocate and lock the agent
immediately.  Some sites prefer to run with the agent not locked
in memory.  They find the memory load from locking Agents to
be too large.

The MPP_AGENT_IOPATH environment variable allows
one to specify the I/O should be direct (not buffered) which
increases the I/O bandwidth.  Direct I/O generally should be
used with the “immediate_shuffle” option.  By default,
MPP_AGENT_IOPATH uses buffered I/O.

 

4 Results from Paul Helvig

 

Paul Helvig used user-level striping techniques and one or
two PEs per physical disk for optimum I/O bandwidth.  Using a
single PE for I/O, he measured over 50 MB/s.  Using 4 PEs for
I/O he sustained over 130 MB/s.  Using all 64 PEs for I/O, the
bandwidth dropped to 15 MB per second.  These rates were for
write operations; read operations showed similar bandwidths.

Paul used asynchronous I/O and multiple buffers per PE to
maximize the I/O rate per PE.  He used direct I/O through the
Agent.

 

5 Results from David O. Rich

 

David Rich reported that at the Los Alamos National Labo-
ratory they sustained 50 MB/s to a HIPPI frame buffer using a
single PE for the I/O.  With every PE performing I/O, he
sustained 20 MB/s and caused a heavy load on the host.  He
recommends using a single PE for I/O.

 

6 Results from Kah-Song Cho

 

Kah-Song Cho works for Cray Research at Los Alamos.  He
wrote an I/O library for the Parallel Ocean Program (POP).  It
gathers data into a CRAFT shared array, compressing out
unneeded data (approximately a 50% compression).  Each PE
with data then performs I/O for the portion residing on that PE.
Using Fortran direct access I/O he sustained about 25 MB/s.

 

7 Summary 

 

I/O on the CRAY T3D can be optimized to deliver hundreds
of megabytes per second of I/O.  (Most applications do not have
access to the number of parallel disks needed to sustain this very
high bandwidth.)  Many applications can use system level
striped file systems and sustain 25 to 50 MB/s while using a
single PE for I/O.  With a little more coding effort and careful
layout of the data on disk, one can sustain over 100 MB/s using
4 or 8 PEs for I/O.

The key factors to keep in mind are minimizing the number
of system calls and minimizing the physical disk contention.

I owe thanks to Paul Helvig, Tim Gass, David Rich, and
Kah-Song Cho for their excellent performance results.


