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HOW CRAY’S ARITHMETIC HURTS SCIENTIFIC COMPOTATION
and what might be done about it

W. Kahan
Flect. Eng. & Computer Science Dept.
University of California at Berkeley

ARSTRACT

CRAY’s floating-point hardware runs fast but breaks mathematical
rules honored nowadays by practically all computer arithmetics of
commercial significance in scientific and engineering computation.
Consequently valuable numerical software, provably infallible on
most other machines, occasionally fails mysteriously on CRAYs.
Az speeds and memories grow, so does the risk of failure.

CRAY users suffer because they cannot merely recompile ostensibly
portable software that works on workstations. To mitigate risks,
software mast instead be scrutinized for obscure hazards on CRAYs
and encumbered in complications that compromise performance. For
instance, CRAY’s software DOUBLE PRECISION ( REALX18 ) runs
about three times slower than it could if CEAY’s floating-voint
add/subtract possessed the guard digit enjoyved by other computer
arithmetics. Retrofitting a guard bit, as proposed herein, will
not affect existing software on CRAYs adversely nor will it slow
CRAY’s  cycle time.

Those of us who do not own a CRAY suffer from its arithmetic in
a different way. We are denied software that would work well on
our machines but, because it might fail on CRAYs, i3 ineligible
for the Federal subsidies granted to research projects devoted,
among other things, to the development of software portable to
all supercomputers and especially CRAYs. For instance, the
LAPACK oproject has had to eschew algorithms that would run better
than all others on workstations but slowly or wrongly on CRAYs.

Ultimately CRAYs and workstations will approach compatibility
with each other. 8Since almost all workstationz conform to IEEE
standard 754 for floating-point arithmetic, CRAY will have to
do the same unless that standard falls by the wayside for lack of
nunerical software that expleoits its superiocr features unavallable
on  CRAYs., In other companies some hardware designers, unaware
of nasty implications for software, have come to regard CRAY’s
arithmsetic as a licence to do no better. Already new designs have
begun to appear that "support” certain IEEE standard features
{ some of them latent in CRAY hardware but unsupported by its
software ) only i1if new hardware is run in a slow mode unlikely to
be mentioned in advertisements of benchmark performance. ( The
1880 is like that.) Therefore, all of us have a stake in the
guality of CRAY equipment and software regardless of whether we
use them, since thelir example influences other producers.

Prepared for the CRAY Uzer Group meeting in Toronto, Canada, Apr. 10, 1990
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INTRODUCTION

To advocate a change in CRAY’s arithmetic is, 1 know, +to swim
against the current. Many who read this take justifiable pride in
the speed with which CRAYs carry out computations indispensable

to progress in Science, Technology and National Security. If
CRAY’s arithmetic is so sinful that it must be changed, and if
" the wages of sin is death " (KRomans 6:23), why are so many of

vou still walking about? You must have triumphed over aberrations
built into CRAY’s arithmetic; of that triumph too you can be
Justly proud, but what did it cost you?

How much time has been spent to put into numerical scftware those
extra precautions occasioned only by the idiosyncracies of CRAY’s
floating-point arithmetic? How much do they penalize performance?

Only recently have some major changes in the computing ambience
rendered more nearly obvious the cost of coping with perversely
designed arithmetic. One change has been the disappearance of a
few perverse arithmetics, notably those descended from the CDC
6600 and the Univac 1107, leaving CRAY standing tall like a
tree amidst a forest of stumps. Many a super—computing mainframe
has been felled by its disadvantageous price/performance compared
with powerful new workstations. Workstations are replacing the
terminals through which users used to access their CRAYs. Now a
user typically has access to a network of workstations and other

computers among which may be several CRAYs. Consequently a user
whose only computer used to be his CRAY can now obtain results
from diverse machines, and compare them. Results differ.

Results differ between CRAYs and other machines, and between
one CRAY and another; and when the difference is too big to
ignore a CRAY is too often in the wrong. Invidicus Comparison
is the new phenomenon that now disturbs many a CRAY user who,
ten yvears ago, would have believed along with CRAY’s designers
that variations originating in the 48*% =ig. bit can neither rise
up 50 often nor smite so hard. That belief was mistaken.

For instance, the results displaved in Table 1 are taken from a
computation making the rounds by electronic mail. 0. 0. Htoraasli
of NASA Langley Research Center, Hampton VA 23885-5225, sent
them to me. The computation is a Finite-Element analysis with
168148 simultanecus equations. That the 53-sig.-bit machines are
about 32 +times as accurate as the 48-gig.-bit CRAY 2 comes as
no surprise, but why the 48-zig.-bit CRAY Y-MP should be 32
to 111 times worse than the CRAY 2 is unclear; can the chopped
add/subtract on the Y-MP be that much inferior to the rounded
arithmetics on the other machines? Questions like this about a
computation that costs over 10° floating-point operations will
not be answered by comparing results on a hand-held calculator.

The examples in this paper are designed to be debugged by hand and
vet not easily. They are designed to reveal how CRAYs can get
plausible but wrong results from ostensibly portable software that
executes provably reliably on all other computers now commercially
significant for scientific and engineering computation. Table 2
lists some of those other computers. I do not allege that they
can compute something a CRAY cannot. Rather, +they form a large
community from which CRAY is excluded, a community thsast shares
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numerical algorithms and software wyxititen in a transparent natural
style. Those algorithms will work on a CRAY only after they are
modified to compensate for idiosyncracies in CRAY’s floating-
point arithmetic. The modifications encumber algorithms with
fudge-factors, +tests and branches unnecessary in the community at
large, sometimes transforming a simple fast algorithm into a slow
complicated one, sometimes Jjeopardizing accuracy too.

But very slight changes to CRAY's arithmetic would obviate those

complications, with dramatic effect upon numerical software:
Almost all ostensibly portable numerical software, designed to
run after recompilation indiscriminately on all computers made
hy IBM and DEC and SUN and most others, would run also on
CRAYs with results only slightly (6 sig. bits) less accurate.

That is the motive for this paper: +to change CRAY’s arithmetic.
I have wished to do so for a decade. And now I am not alone.

David H. Bailey et al., in "Floating Point Arithmetic in Future
Supercomputers” Int’l J. of Supercomputer Applications 3 ( Fall
1989 ) 86-90, advocated that supercomputers adopt IEEE standard
754 for binary floating-point arithmetic although it was intended
at first for microcomputers. ( For a description of that standard
see W. J. Cody et al. "A Proposed ... Floating-point Arithmetic”
IEEE MICRO, Aug. 1984, 86-100.) I think they are right.

In the long run CRAY Research Inc. will have to bite the bullet
and switch to IEEE 754. What will CRI do in the short run?

Since IEEE 754 is notoriously harder than CRAY's present

arithmetic to build correctly and fast, CRAY engineers will need

time to do the job right. And something has to be done for users

of CRAYs currently installed. Compared with conversion to IEEE

754, my interim proposal herein is extremely modest:

- It retains CRAY’s opresent floating-point format, leaving all
files of binary data unaffected.

- It does not require recompilation of existing Fortran codes.

- It will not noticeably slow CRAY’s arithmetic.

- I think it can retrofit advantageously onto existing CRAYs.

I propose that CRAY Besearch Inc. retrofit all CRAYs with one
guard bit in Subtraction. Other improvements are less important.

As this is written, CRAY engineers are mulling over my proposal
and their other options. I am grateful to several of them for
trying to help me get the facts straight in this document, but
they too are mystified by parts of CRAY’s manuals. For lack of
officially authorised access to the detailed specifications and
simulators that tell exactly what different CRAYs do, 1 have
had to speculate like an astronomer, drawing possibly incorrect
inferences from remote observations; I request your indulgence.
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Table 1 : Maximum Displacement computed by different arithmetics
Qomputer Arithmetic Carried No. Sig. Bits Computed Result
CRAY 2 Double Precision 96 0.447440 341220 910663
Convex 220 REAL*8 Non-IEEE 754 53 0.447440 3399895 944
Ailicon Graphics Iris IEER 754 53 0.447440 3398538 063
CRAY 2 REAL®E3  ABSCII data 48 0.447440 303

CRAY 2 REAL*8 Binary data 48 0.447440 472

CRAY Y-MP REAL¥8 ASCII data 48 0.447436 106668

CRAY Y-MP REAL#%3 Binary data 48 0.447436 256078 &
Table 2 : A CCHMUNITY THAT EXCLUDES CRAYS

Computers Sharing Numerical Algorithms
Despite Differences in Arithmetic Hardware

Hexadecimal Floating-point, 4- and 8-byte words:
IBM ’370 series, including 3090.
Clones by Amdahl, Fujitsuw, Hitachi, Siemens,
Near—clones by Data General,

Qctal Floating-point, 52-bit words:
Burroughs B8700’s descendants, 1f any still exist.

Binary Floating-point, 36- and 72-bit words:
DEC 10 and 20, if any still exist.

Binary Fleoating-point, 4~ and 8-byte words, non-IEEE 754
DEC PDP~11 and VAX, including VAX-vector 6000.
Hewlett-Packard 3000s, if any still exist.

IEEE 754 Binary Floating-point, 4- and 8-byte words:
IBM RE-8000.
Sun 3, 4 and Sparc, and clones by Solborne.

MIPS 2000, 3000, 6000, DECstation 3100.
Silicon Graphics Iris. Stardent.
Hewlett-Packard. Apollo.

NCUBE . Inmos Transputers.

Machines using chips by
National Semi., BIT, Weitek, TI, AMD, IIT,

IEEE 754 Binary Fleoating-point, 4-, 8-byte, and wider words:
IBM PC and P5/2 descendants and innumerable clones.
AT&T. Sun 386-based.
Apple 2 and Macintosh. NEXT.
Machines using chips by
AT&T, Motorocla, Cyrix, Intel 80x88/80x87, 80960.

Decimal Floating-point:
Hewlett~Packard Programmable Calculators built after 1974.
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WHAT ABE THE CHABCEZ THAT A& NOWMERICAIL PROGRAM WILL FATL?

I do not allege that many airecraft will crash, bridges collapse
and buildings crumble because of software failures on CRAYs. No
conscientious designer trusts the results of one computation; he
will insist upon corroboration from different methods and varied
data before risking human life or large capital expenditures. If
numerical errors cause harm they are usually part of a simulation
of a proposed design which the computer declares unfeasible, so
nothing will be done to expose the errors until after a competitor
achieves what now seems impossible. This is the worst price we
pay for unreliable software; second worst is the time spent on
attempts to correct software we distrust. Third by far is the
price paid for calamities caused by computers’ numerical errors.

Generalities about the probabilities of software failure cannot be
quantitative encugh that actuaries could estimate the premiums for
insurance against numerical calamities. The probabilities of rare
failures are uncertain by orders of magnitude except that they are
small. The consegquences of a calamity are uncertain by orders of
magnitude except that they may be enormous. Premiums must depend
partly upon estimates of the average cost of calamities, a sum of
products like ( probability of calamity Y*( consequential cost ),
which is unknowable. Nevertheless something worth knowing can be
sald about how the probabilities of software failure depend upon

such factors as the level of roundoff and the dimensions of data.

Ill-Condition, which indicates that results are hypersensitive to
tiny variations in data, has probabilistic aspects that have been
the subject of publications by researchers ranging from John von
Neumann in the late 19403 +to Jim Demmel, Alan Edelman and
Bteve Smale, among others, in the last few vears. The following
explanation brutally condenses their work and my own.

111-Condition = HNear-Singularity

A problem that is excessively ill-conditioned for a given computer
is probably insoluble on that machine without recourse either to
software-simulated higher precision for both data and intermediate
calculations, or else to some reformulation of the problem that
involves possibly devious analysis and certainly exact symbolic
manipulation. Attempts to solve the problem without resorting to
either expedient usually fail. Other failure modes exist too.

What causes a numerical program to fail is approaching too near a
singularity or passing beyond it. A singularity is a boundary
point of the domain within which everything being computed is an
analytic function of all its data and intermediate variables. A
problem is regarded as numerically unstable, +too i1l conditioned,
Just when its data is too close to a singularity, regardless of
algorithms chosen to solve the problem. An algorithm and also its
program is regarded as numerically unstable just when some of the
singularities are crossed by variations in intermediate results,
not by variations in the given data. In other words, we do not
blame a program for failing to solve accurately a problem that is
intrinsically intractable because its solution is hypersensitive
to unavoidable variations in its data. We do condemn a program
when it produces poor results for data it seems to dislike even
though the problem’s solution is unexceptionable for that data.

6
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For a fixed set of data, a program that seems unstable on one
machine can be stable on a second that carries sufficiently more
figures because roundoff on the latter is negligible compared with
the distance to any nearby singularity, whereas roundoff on the
former can carry the computation across that singularity. That is
why Double Precision can succeed where Single Precision fails.

There is another way, less well appreciated, in which a program
can be unstable on one machine and yet ztable on a second; the

first may be capable of errors or variations of a kind that cannot
happen on the gecond. CRAYs suffer from this failure mode; they
encounter singularities where other machines don’t, as we’ll see.

The closer data comes to a singularity, the worse will be the
accuracy of computed results. In most cases the number of correct
figures in results roughly equals the logarithm of the distance,
from the data to the nearest singularity, measured in units of
roundoff. That is why carrying another significant digit during
computation usually produces another correct significant digit in
results.

( The weasel-words "usually"” and "In most cases" are made
necessary by cases in which only a fraction of additional figures
carried turn up in final results. For instance, when computing
unwittingly what turns out to be a double root, we get only about
half as many correct figures as we carry. In such a case a square
root of a negative number is more likely than division by zero to
expose this singularity, which is rarer than most other kinds.
Another kind of singularity, more like an exponential at infinity
than a pole, is associated with excessively large step-sizes that
violate stability criteria for differential equatiocn solvers; if
the step-size is regarded as part rather of the program than the
input data, the present discussion remains applicable.)

Estimating the Probability of Failure

Inadequate accuracy or a rude messzsage is the result when numerical
software fails, and evidently this happens when data comes closer
than a roughly specifiable distance to a singularity germane to
that software. Therefore we can estimate the probability of such
failure by calculating that fraction, of the volume occupied by
all allowed data, that is closer than a specifiable distance to a
germane singularity. Buch a calculation becomes feasible when we
know encugh about the locus of germane singularities.

The singularities studied in the literature are almost exclusively
those germane to a problem rather than a program. The distinction
matters because many a program fails at data for which the problem
has an acceptable scolution that the program canncot find accurately
or at all. For instance, consider a program that solves systems
of linear equations without pivotal exchanges. The singularity
germane to a linear system is a singular matrix, which occurs at
data where its determinant vanishes. The additional singularities
gerymane to the program occur at data where certain subdeterminants
vanish, corresponding to vanishing pivots:; knowledgeable users
will restrict this program to data ( positive definite systems or
systems with dominant diagonals, etc.) farther from additional
singularities peculiar to the program than from the singularity
intrinsic to the problem.
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Whether intrinsic to the problem being solved or artifacts of the
program, most singularities have the same degrading effect upon
the accuracy of results. There are a few exceptions, mainly
singularities that affect only the iterates in a self-correcting
iteration; these singularities are more likely to stop iteration
or prolong it than degrade final accuracy. We shall not ignore
these exceptional cases, but they detract little from our final
conclusion, which can be summarized in one Fisk Bguation thus:

Risk Eguation: opPp = O M 5 r.

Here DF is the daily probability of failure, the expected rate
of software failures per day. ¥ is the amount of memory in use;
larger memories go with larger data sets, higher dimensions and
longer calculations. S 1is the speed of the arithmetic; faster
machines are exposed to risk more often. The roundoff level r
indicates the accuracy of the floating-point hardware; smaller
arror entails lower risk. ¢ and K are positive constants that
depend upon the kind of software in use and the qguality of data,
and also upon the guality of arithmetic ( whether it is rounded
or chopped, etc.); and usually K > 1

Predictions of Risk
Were records kept correlating

aftware failures with the amou
. jare Ln use, eoaplrical sstimates
of the constants O s K oonld be computed and used in the Risk
Bauation to predict expected rates of numerical software failure
among sufficiently similar machines. The machines in Table 2

are gsimilar enough that I expect the constants ¢ and K to vary
relatively little among them. ( The IBM ’370 family’s chopped
arithmetic is slightly riskier than others’ rounded arithmetics in
50 far as chopped arithmetic suffers more from bilas. And risks
from exponent over/underflow have been neglected though they are
noticeable in the D-formats on DEC FPDP-11s and VAXes.)

The Risk Eguation predicts failure rates DF generally worse
for CRAYs than for most machines in Table 2. The excess is due
in part to singularities that CRAYs can encounter where other
machines cannot, as will become evident later. Most of these
extra singularities can be removed by rewriting software to taks
CRAYs’ idiosyncratic arithmetics into account without sacrificing
portability to the machines in Table 2, and then the rewritten
software will have nearly the same values (¢ and K for CRAYs as
for other machines. Even so, CRAYs end up with higher failure
rates for reasons that can be inferred partly from Table 3.

Table 3 shows how accurately some of CRAY’s competitors perform
their floating-point arithmetic upon 8-byte words. The accuracy
figures take into account both the numbers of significant bits
carried and how the last bits are rounded off. For the IBM 3090,
"chopped” arithmetic loses one bit and the hexadecimal format can
lose up to three more. For CRAYs, the figures vary because the
CRAY 2 "rounds" add/subtract differently than other CRAYs
"chop" +them, and regardless of whether multiply, divide and
square root are “rounded" or "chopped" they err in diverse
wayvs I have vet to figure out fully from CRAY’s manuals.

oo
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Table 3 : Gignificant Bits for Fortran REAL*¥8 Arithmetic
Computer Family Radix Precision wvs. Accuracy
CRAY 1, X-MpP, Y-MP, 2 2 48 45 to 46
IBM ’370, ... 3090 18 53 to 56 2 to bb
IEERE 754 Double Precision 2 53 53
DEC VAX @G format 2 53 53

D format 2 56 56

ROUHding error level: b - 2-(; No. of slg. blts of Acoursoy )

Table 3 shows that CRAY’s roundoff level »r = 2748 (o 2796
exceeds 1ts competitors’ by at least an order of magnitude or two.
CRAY’s memory sizes M are bigger too by an order of magnitude
or two. And ©CRAY’s speed & is also bigger by about an order
of magnitude. Therefore, the Risk Eguation predicts software
failure rates bigger for CRAYs than for its competitors by some
orders of magnitude. Bince the bigger memory sizes have come into
use among CRAYs only recently, CRAY users might expect to see
increasing failure rates. But many of these failures will provoke
programmers into using Double Precision to diminish »r despite
its terrible performance penalty; therefore casual onlookers may
observe not an increasing failure rate but rather an increasing
incidence of Double Precision, which is less noticeable.

The risk that CRAY Research Inc. cannot ignore is the possible
appesarance on the market of a supercomputer with roughly CRAY's
spead, roughly CRAY’s memory, arithmetic conforming to IEEE
standard 7b4, and a significantly lower software failure rate.

If my Risk Equation is correct, CRAYs must now suffer severely
higher failure rates than do other machines for similar numerical

software. Unfortunately, the computing industry does not collect
statistics that would confirm or contradict this prediction. That
is why I must offer a host of examples and their analyses to show

how failures can happen. If the examples seem a little contrived,
vet are they far easier to understand than the puzzles encountered
in real life.
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CRAY’s ADDITION AND SUBTRACTIOH
Most software fallures traceable to CRAY’s anomalous arithmetic
are caused by the peculiar ways CRAYs subtract. For instance,
the program AREA presented nearby realizes a numerically stable
version of Heron’s classical formula for the area of a triangle
with given side~lengths. Regardless of the triangle’s shape, the
program is guaranteed accurate (in the absence of over/underflow)
on any conmputer listed in Table 2 ; a proof of accuracy despite
roundoff may be adapted from ex. 23, p. 152, of Flcocating-Point
Computation by Pat H. Sterbenz (1974), Prentice-Hall, New
Jersey. The proof requires this property of computer arithmetic:
If 1/2<A/B <2 +then A-DB is computed exactly (unless it underflows).
Lacking this property, CRAYs lose AREA’s accuracy as the shape
of the triangle approaches a needle. All accuracy evaporates in
extreme cases like those generated by a little program RATAREA
shown above its results in Table 4 . Only CEAYs dislike it.

It may be hard to believe that a program so short and innocuous-
looking as AREA can fail on a CRAY and yet work correctly on
practically everything else. What goes wrong? The two operations
that cause trouble are the subtractions A-B and C-D underscored
#H##  in the program’s text. Were they replaced respectively by
SNGL(DBLE(AY - B) and SNGL(DBLE(C)Y - 1)

in PFortran on CRAYs, and only on CRAYs, the program would
get provably correct results on CRAYs +too; but this expedient
is too uneconomical to be recommended as a general practice. It

serves here merely to confirm our diagnosis.

What goes wrong with AREA goes wrong similarly with a host of
other programs when they are run on CRAYs ; examples include
areas of gspherical as well as plane triangles, angles, side-
lengths, radii of circumscribed and inscribed circles, and other
trigonometry. Different kinds of examples will be examined later.

Where is CRAY’s Missing Guard Bit ?
The CRAY X-MP and Y-MP subtract differently than the CRAY 2 ,
but similarly enough that most of the description can be shared.

Steps in CRAY’s Subtraction D:=A-B

#1: Swap if necessary to get JA! > B!

k2: Bhift B’s sig. bits right enough to egqualize exponents.

#3: On a CRAY 2, round off B’s sig. bits past A’s 48th.
On a CRAY 7-MP, discard B’s sig. bits past A’s 48+th.

#4: SBubtract what is left of B from A .

#5: Shift left or right to normalize the difference.

¥6: Discard any bit past the result’s 48th.

If the foregoing does not match exactly what CRAY’s manuals say,
vet I think it matches what they intended to say. "Discard"” here
means to chop bits off the magnitude, possibly diminishing it.
"RBound” means to add 1 to the magnitude’s bit just right of the
last to be retained, and then chop. Rounding seems to imply an
extra carry propagation, but the hardware performs any rounding
increment in #3 simultanecusly with the subtraction in ¥4
Addition A+ B is just A-(-B)

10



4 How CRAY’s Arithmetic Hurts ... June 13, 1990

ABEA of a Triangle given its Side-Lengths

Programmed Ostensibly Portably in a Nondescript Language

Real Function AREA( Real Values A, B, C )

‘= area of a triangle with given side-lengths A, B, C.
Note that arguments are copies passed by Value.
.. PFirst sort the arguments:
If A < B then BWAP(A, B) ;
If B < C then { BSWAP(B, C) ;
if A < B +then SWAP(A, B) 1} ;
... Now A > B > C . HNext, test for valid data:
D = A-B ;
.. HEE inaccourate only on a  CRAY.
I£f D > C then {

Protest( "AREA(A, B, C) has arguments A =", A, " ," 3,
Protest( " B =", B, " and C =", C };
Protest( "that aren’t a triangle’s sides."™ Y; Stop } ;
RBeturn AREA = SQRT( (C4+B+AYR(C-D)*x(C+D)YX((B-C)Y+A)Y Y/4 ;
End AREA . ... #H#¥ inaccurate only on a CRAY.

Program RATAREA

displays ratios R and & of areas of four needle-shapsd
triangles for which only CRAYs get incorrect results

that disagree with BRX and 88X , as shown in Table 4
.. First create test data Y and 72 with odd least-sig. digs.:
Y = NEXT1(2.0) ; ... = 1.0 + (anything tiny enocugh).
H = 0.5 ; ... { These data Y and 7 are not critical.)
Z = NEXT1(H) ; oo = 1.0 - (anything else tiny enough).
T = 2.0%((H-Z) + H) ;

... Next predict approXimately what the ratios ought to be:
BX = 8QRT(1.0/(1.0+Y)) ; 88X = SQRT(Z%0.75) ;
Finally compute ratios of areas of special triangles:

= AREA(Z.0, Y, 1.0)/AREA(Z2.0, Y, Y) ;
S = ABEA(L.0, Z, TY/AREA(CL.OQ, 1.0, T) ;
Display R, RK i ... they should agree near 0.7071..
Digplay 8, 8X ; ... they should agree near 0.866. ..

End RATAREA

Table 4 : Results from Program RATAREA on Various Machinss
Pomputer Family R )

CRAY 1, X-MP, Y-NMP 0.0 0.0
CRAY Double Precision ( A1l ) 0.0 0.0
CRAY 2 0.81649 £58... 0.89899 999. ..
All machines in Table 2 £.70710 678... 0.86602 540...
Correct results ( RX, 8¥X ) 0.70710 878... 0.86802 540..

11
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Addition and subtraction suffer less from statistical bias on a
CRAY 2 than on a CRAY ?7-MP provided operands have sufficiently
different magnitudes. That bias matters enough to account for the
discrepancies Storaasli reported; see Table 1. His results
were obtained by solving a huge system of linear equations with a
positive definite matrix; +the bilas on the Y-MP had the same
effect as increasing each diagonal element of that matrix by about
100 units in its last place while altering the relatively smaller
off-diagonal slements in ways less predictable and less important.
Increasing the diagonal elements of a positive definite matrix
diminishes its inverse and tends to diminish the biggest elements
of the equations’ solution to an extent comparable with what we
see in Table 1 . Whether the foregoing explanation accounts for
the discrepancies fully remains to be seen; since I have looked
at neither BStoraasli’s program nor his data, my diagnosis is no
better than a diagnosis of cancer carried out over the telephone.

When A and B come relatively close the qualities of differences
A-B computed on diverse CRAYs diverge from one another and
from almost all other machines in wavs too drastic to be hidden in
statistics. What happens will be described here as if arithmetic
carried only 8 sig. bits instead of 48. Suppose A= 8.0 and
B is the 8 =sig. bit floating-point number next smaller than A ,
namely B = 7.96875 . Written in binary, they are A = 1000.0000
and B = 111.11111 . Let’s try to compute D:= A-B :

Like other machines Like a CRAY 7-MP Like a CRAY 2

B e R N R VPV N S Y N R R R N R Ve R L R

A 1000.0000 1000.0000 1000.0000
-B -0111.11111 -0111.11117 -011t.111172
chop/round + 1 -1

D 0000.00001 0000.00010 0000.00000

Other machines carry internally an extra guard digit that makes
their difference D = A-B exactly. The CRAY 72-MP lacks that
guard bit, 50 it drops B’s last bit:; this has the same effect
as adding 1 in that position to cancel out a last bit that would
otherwise have been subtracted from A . The CRAY 2 lacks the
guard bit too; it injects B’s last bit into the subtraction in
A’s  last bit position instead of B’s last, which is tantamount
to subtracting that last bit twice. Consegquently, +the CRAY 7-MP
gets a difference D twlice as big as it should be, and the CRAY
2 gets D = 0 . {That zero is ominous; later we shall see whyv.)

CRAYs are not the first machines to compute differences blighted
by lack of a guard digit. The earliest IBM ’360s, from 1964 to

1967, subtracted and multiplied without a hexadecimal guard digit
until SHARE, +the IBM nmainframe user group, discovered why the

consequential anomalies were intolerable and so compelled a guard
digit to be retrofitted. The earliest Hewlett-Packard financial
calculator, the HP-30, had a similar problem. Even now, mnmany
a calculator ( but not Hewlebtt-Packard’s Y lacks a guard digit.
And a pair of fleoating-point coprocessor chips, the IIT 2C87 and
3C87, lack a guard bit for their REAL¥10 format though they do
conform to IEEERE standard 754 in REAL*8 and REAL*x4

SBeyvmour Cray’s floating-point arithmetics on the CDC 8600 and
Univac 1107 and their descendants reguired extra operations to be

12
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compiled after every add/subtract to achieve the effect of a guard
bit; since that effect hardly ever mattered much, hardly any
compilers complied, so most users could truthfully say that their
avithmetics lacked a guard bit. That is one reason why neither of
his earlier machines is listed in Table 2

A Bparious Backward Error-fnalysis

Dince so many compubers, lacking a guard bit, occasionally get a
difference D = A-B that is utterly different from A-B
their manufacturers must have a rationale of sorts to excuse that
discrepancy. Here it is.

Review the explanation above of the error in D . Note that the
bit dropped from B can be regarded as subtracted or added into a
position Jjust past the last bit of A . Hence D = A-B vields

actually D= A*-B wherein A* differs from A only in bits
beyvond the last bit stored for A . 8Since the last few bits of A
are almost never accurate, changing the very last is no big deal.

A little algebra turns all this into mathematics. Computers asked
to compute D:= A-B generally compute D= (A-BY(1+ &)
instead, where the unknown perturbation d due to roundoff must
satisfy (d! < r . Here r is the roundoff threshold mentioned
in Table 3 and the Risk Egquation above. Machines that lack a
guard digit compute something else; their D = A(lta) - B(1+k)

in which the perturbations & and b due to roundoff must satisfy
abz=20 and tal + 1B < r . B8ince operands A and B inherit
uncertainty from previous operations, perturbing them a bit can’t
hurt the computation of a continucus function. Besides, the two
ways to compute D differ significantly only when A and B are
s0 close that massive cancellation occurs in A-B and, as we
all know, cancellation portends numerical instability.

Like every belilevable lie, +the foregoing argumsnt is pernicicus
because it is mostly true. Cancellation is often identified as a
culprit in numerically unstable algorithms, but not always; and
often cancellation is the goal of a computation, as when linear
equations are solved, so cancellation cannot always be bad. Most
numerically stable algorithms are indeed insensitive to end-figure
perturbations in their intermediate results, but not all of them.
AREA 15 a counter-example. ABEA 1is accurate, except on CRAYs,
despite massive cancellation in A-B or C-D , and it fails on a
CRAY Jjust because of end-figure perturbations to A, B, C or D

Evidently the familiar arguments about cancellation and end-figure

perturbations are flawed. Exceptions like AREA and others to be
discussed later are rare, rare enough to come as surprises, but
not rare enough to ignore. If we hope to discern the difference

between stable and unstable algorithms, and to diagnose correctly
the latters’ diverse failure modes, we need better ideas.

13
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Bt

pi

Figure 1 : Noime leaks ionto the Feecdback Path

5 the distructive effect of & missing guard bit
npon scome otherwise stable algorithms is to consider the effect of
3 nolsy connectlion in the feed-back loop of a control system shown
in Figure 1. The noise obscures a tiny difference between some
function of the output and its intended goal just as the missing
guard bit obscures a difference that would have cancelled cleanly
otherwise; +then the noise is fed back and amplified enormously
along with the input signal. But this is all too figurative; we
have to return to mathematics to see what is really happening.

Benign Singularities

What causes a numerical program to fail is approaching too near a
singularity or passing beyond it. Arithmetic idiocsyncracies like
lack of a guard digit do not alter this fact, but they do change
the meaning of "singularity." Three examples will show how.

HYome singularities are removable; an instance is at x = 0 in
p(x) = dif x = 0 then 1 else sin(x)/x
Mathematically, +this conditional statement defines a function ©
that is analytic at every finite x ; the singularity at x = 0

has been removed by the test and branch. Computationally, the
same is true provided the library’s implementation of sin is as
relatively accurate as on almost all machines listed in Table 2.
When both numerator and denominator of sin(x)/x are accurate to
nearly full precision, the same must be true of their quotient.

And the same would be true on a CRAY, using an implementation of
sin described by CRAY’s Jim Kiernan at this CUG meeting, but
for a tiny technicality; what a CRAY computes for sin(x)/x is
actually (1/x) sin(x) . If x is nonzero but too tiny -- nearly
CBAY’s underflow threshold -- its reciprocal will overflow before
CRAY’s computatation of (1/x) sin(x) has been completed. To
repair that defect. replace the conditional statement above by
S(x) = if 1+ ix! =1 +then 1 else sin(x)/z ;
this removes the computational singularity on all machines I know.

14
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{ 5(x) could still fail on machines that round by "jamming", as
John von Neumann recommended, because they round 1+ ix! away
from 1 for all nonzero x . IIT 2C87 and 3C87 chips round

their REAL*10 format this way, but S(x) works anyway because
of a quirk in theilr comparison operator to which we shall return.)

A singularity at v = 1 disappears similarly from the definition
L(y) = 4f wv=1 +then 1 else In(y)/(yv-1)

L(y) 1is analytic at all vy > 0 including near v = 1 where its

Taylor series is

L(y) = 1 - (y-1)/2 + (y-1)%/3 - (y-1)%/4 +
We need not use the series in our program; the definition above
is fully accurate despite cancellation near y = 1 oprovided that,

when vy 1s regarded as known exactly, nonzero computed values of
Im(y) and vy -1 are accurate to nearly full precision, as they
are on all machines in Table 2. The thought that inberited error
in v = 1+ junk could leave vy - 1 = Junk and produce a result
L(y) = Junk/junk should not distract you; Junk nearly cancels,
leaving L(y) = 1 - Junk/2 +to inherit no more erroxr from Jjunk
than it deserves. Our simple definition is numerically stable.

Except on CRAYs. Jim Kiernan’s logarithm is accurate enough but
CRAY’s subtract is not; review the 8-bit example A -B but
with its binary point moved three places left. To prevent CRAY’s
subtraction from reintroducing singularity, rewrite L(y) thus:

L{y)y = 4if (y-0.5)=0.5 +then 1

’ alse Ln{(y)/((v-0.5) - 0.5)

This pornographic expresszion is accurate to nearly full precision
on all computers I know provided the run-time library’s In(...)
is accurate, and provided the denominator is not compiled back to
"(y ~-1)Y " by the kind of over-zealous ‘"optimization" practised
by an old Univac Fortran compiler.

The third example is taken from real life with all its complexity.
Financial computations often entail the removal of a singularity
in the computation of the present or future value of a sequence of
N constant discounted or interest-garnering cash flows;

V(N, i) = 4if 1 = 0 +then N else ((1+1)-1)/i
Here 1 4is the discount or interest rate expressed as a fracthtion;
expressed as a percentage the rate would be I = 1001 % . On no
computer is this conditional statement numerically stable; all
acouracy can be lost 1f 11! is tiny enough. Redefining V as
follows removes much of the computational singularity:
VN, 1) '
y o= 1 + i ;

Return V 'z if v = 1 then N else (1 -y¥)/(1-v)
Provided N 1is an integer, positive or negative, and provided
v is computed in a reasonably accurate way eilther by repeated
squaring ( commonly used for Fortran’s Y¥KN ) or by a formula
like exp(NIn(y) (universally used in Fortran’s YRXREAL(N)) ) ,
the foregoing redefinition of V 1is provably accurate to at least
half the sig. digits carried by the arithmetic of any computer in
Table 2. ( Of course, almost all sig. digits carried are correct
unless interest rate 1 is too tiny to be seen often nowadays.)

Here is a glimpse at the proof of V’s claims to accuracy. Btart
from an observation that v = 1+ i &actually yields y = 1+ it
where 1i-i*! < u = 1l ulp of ¥ ; here an wulp 1is one unit in the

15



CUG3: How CRAY’s Arithmetic Hurts ... June 13, 1990

last place stored. When 1 is so small as Jjeopardizes accuracy,
i*/u must be an integer, which presages an interesting proof,

That proof is invalid on CRAYs. However another more interesting
proof gnarantees similar accouracy claims for CRAYs' V  provided
¥M comes either from Jim Riernan’s new Y¥%%X with X = REAL(N)
or from Y¥%*N via repeated sguaring but not uwsing "chopped"” X*F
multiplication on a CRAY X-MP or Y-MP, about which more later.
Why can’t CRAYs’ computed denominateor 1 -y be as utterly wrong
for V as it can be for the first version of L(y) 7 Because if
y = 1+1 ds slightly less than 1 the last sig. bit of ¥

turns out to be O so the denominator is computed exactly.

Whether our tricky program for V(N, i) deserves to be considered
numerically stable makes a good subject for debate. On a CRAY 2
¥V is accurate to at least seven sig. dec., probably good enocugh
for government work. Among financial calculators and software
packages on personal computers, only the best do better. ( How?
Bee pp. 682-5 of the Apple Numerics Manual, Second Edition (1988)
Addison-Wesley, Calif.) And yvet our programs for V and L will
make many a reader uneasy, as if he were tottering on the brink
of numerical instability. So many rules are being viclated! The
programs fly in the face of a familiar maxim,

NEVER test floating-point numbers for equality;
they flirt with subtractive cancellation; they compute Junk/junk
and they get away with it. Don’t they deserve to fail on CRAYs ?

Confused Comparisons on the {CRAYZ2
Let us try to be logical about comparing floating-point numbers.
We can agree that numerical software is often better served by a

boolean function like eq(x, v, teol) , which is True Jjust when
lx -yt < tel , than by the simpler looking predicate " x=y ",
provided a suitable choice for tol can be found. Nevertheless,
whether to cope with the case tol = 0 or to implement eq(...)
itself, a computer system still needs a consistent family of
familiar predicates =, #, <, etc. Responsibility for consistency

is shared by implementers of the compilers and of the hardware.
Which of these, if any, deserve blame when a statement like
Df = if x=zy then fil(y) else (f(x)-£(y))/(x-¥)

emits at run-time a paradoxical error-message like

" ERECOR: Division by 0.0 oL
or should the programmer be blamed for nct using eq(x, y, tol) 7
Choosing tol is the programmer’'s problem. OQur problem is this:

How can x # v and x-y = 0.0 simaltaneously?

It can happen in three ways:

1. Computed x~-y underflows to 0.0 .
2. Computed x -y really is nonzero but the divider dissents.
3. Computed x-y = 0.0 +though =x and v are big and different.

None of these things can happen to computer systems that conform
faithfully to IREE standards 754/854. All can happen to CRAYs.

The first two ways occur only very rarely, though often enough to
undermine the serenity of conscientious programmers. The first
afflicts all computers that flush x -v to 0.0 when x and y
are bigger than the underflow threshold but their difference is
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not. The second occurs when a CRAY computes not .../{(x-yv) but
(... )%(1/(x~¥)) and the reciprocal overflows prematurely. ( The
second way also afflicted descendants of the CDC 6600 bhecause
its divider and multiplier examined only 12 leading bits to test
for 0.0 instead of the necessary 13 tested by the adder.) We
might wish that programs could detect over/underflow and take some
corrective action to cope with these situations, but no CRAY

has hardware to signal underflow to software.

The third way to get 0 can happen only on a CRAY 2 , on a CDC
6600°’s descendant, or on a cheap handheld calculator, caused by
lack of a guard digit. Recall computing =zero for D = A-B

above using 8-bit arithmetic like a CRAY 2’s. This phenomenon
cannot be ignored; it undermines divided differences, stopping
criteria for iterations, terminations of trajectories, avoidance
of singularity, and estimates of arithmetic granularity. Let us
return to them after closing what looks like an escape hatch.

The paradoxical error-message above could be precluded altogether
if compilers treated every appearance of the predicate " x = y "
ag if it had been written " x-y = 0.0 ". Compilers for the CDC
6600 used to do that; it was a cure worse than the disease. It
ruined the first property that might reasonably be expected from
the egquality predicate, namely that

vV = X should imply fly) = £ for every continuous £
(Discontinuocus functions like f£(x) = 1/x%x are allowed to violate
£(0) = £(-0) despite that 0 = -0 on a machine that has both.)

This reasonable expectation obliges all language implementors to
translate the predicate y = x into the machine instructions that
compare vy with x Dbitwisze rather than subtract them on a CRAY
2 ; the same happens on other CRAYs ( though motivated perhaps
by the deplorable practice of packing character strings into REAL
variables). Therefore no reasonable expedient in the compiler can
preclude that paradoxical error message alleging division by zero;
instead programmers must insert their own defensive tests.

Things could be worse. Comparison operations built into the IIT
2087 and 3C87 allege equality of REALX10 ( but not REAL*8 nor
REAL*4 ) operands whose computed difference can be as big as 3
ulps. Would-be portable numerical software intended for all the
machines mentioned so far, allowing also for compilers’® vagaries,
has to include tests and branches as redundantly parancid as those
shown nearby in the allegedly transportable program NEXT1(X)

NEXT1(X) finds the closest floating-point neighbor to 1.0 on

the zame side as ¥ . RATAREA used it to assess the granularity
of fleating-point numbers while creating critical data to probe
how accurately AREA ran on whatever machine was under test. It

has other uses too, as we shall see when NEXT1 appears again.

Few programmers write programs like NEXT1 , and fewer are so
paranoid as to expect a computer to lie about whether v =x ; so
among the numerous programs analogous to NEXT1 buried deeply in
widely distributed packages of portable numerical software may

L]

well be some that behave strangely on a ©CRAY 2 or TIIT chip.
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NELTL Programmed Transportably 1in a Nondescript Language:

Real Function NEXT1( Real Variable X )
= the number next to 1.0 on the same side as X .
NEXT1(2.0) and NEXT1(0.5) are believed to work right on
all floating-point hardware, aberrant or not, including
CRAYs, IIT 2C87 and 3087 10-byte format, CYBEERs,
The argument X will be left unchanged.

... TFirst we check Decimal-Binary Conversion of 0.H :

B:=0.5; U:=zB+H ; ... We hope H= 1/2 and U = 1

If (U%0-H # H ) or ( (UxU-HY-H #£ 0.0 ) then {
Protest("Decimal-Binary Conversiocn of 0.5 1is Buspect.");
Stop 1 ;

Distrustfully, we obtain two estimates of NEXTI1
4 is the flrst obtained by repeated averaging with 1.

Y = X ; Z:=0
While ( (Z-H # Y B) or ((Z-HO)-(Y~-H) #Z 0.0) ) and
{ (Y-H # H) or ((Y-Eh-H £ 0.0) )
do { Z =Y ; Y 'z H«Z + H 1} ;
... A Z2nd estimate S comes from a dwindling difference D.
Y:=X; ©:=0U,; D:= (Y-B)Y - H ;
While ( (&-H £ Y-H) or ((&~H)-(¥-H) £ 0.0) )} and (D # 0.0)

do { & Y ; Y = (DxH + H) + H; D:= (Y-H) - H } ;
.. Check that 8 = Z ¥ 1 unless X = 1
If ((Z % B) or (Z-95 # 0.0) ) or

{f ({(X-H) - H # 0.0) and ((Z-H) - H = 0.0) } then {

Protest( "Something is wrong with values computed for" );
Protest( " NEXT1{(", X, "), namely" Y
Protest( " 72 =", Z, " and 5 o=", B8, " " )
Protest( "Check how faithfully vour compller s output" J;
Protest( "matches this source-code Parentheses must" );
Protest( "be regpected, and assignments not bypassed" );
Protest( "by retention of variables in extra-precise” );
Protest( "registers. If your compiler is unfaithful,” );
Protest( "try replacing arithmetic expressions by" )3
Protest( "equivalent but separately compiled function™ J);
Protest( "subroutines to thwart would-be optimization” );
Protest( "by the compiler. IT this message reappears,’);
Protest( “vour computer’s floating-point arithmetic” )3
Protest( "is so strange that I want to know about it." J);
Protest( "Please contact me: Prof. W. Rahan" s
Protest( " E.E. & Computer Science");
Protest( " Univ. of California” )
Protest( "(510) 642-5638 Berkeley CA 94720 " Y
otop 1

Return NEXT1 '= Z ; End NEXT1
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Divided Differences
The singularities removed from S(x), L{y) and V(N, 1) above
are typical for Pivided Differences; for instance,
Dsin(x, 0) = S(x) and D2 cos(-2%, 0, 2x) = -8(x)=2/2
where we define the First Order Divided Difference
Df(x,yv) = if y=x then £(x) ... Tirst derivative
else (£(x) -£WMI¥/(x - v)
and the Second Order Divided Differences
DEf(x, v, z) = 1if z=zv=zx then £"(x)/2 ... GSecond derivative
else 1f 2z =x then (£ (x) - Df(x,v))/(x-v)
else (Df(x,y) -DIi(yv,z))/(x-z)
They wallow in the naughtiness we have come to distrust on CRAYs:
floating-point comparison, subtractive cancellation, Junk/ junk

It is a pity that they are ubiquitous in numerical computation.
They figure in the solution of differential equations, prediction
and extrapolation, optimization, geometrical computation, and
iterative solutions of nonlinear equations, among other things.
These are a CRAY’s bread and butter so it has to compute divided
differences safely.

Safety is not a big issue vet on CRAYs. If occasionally some
goftware imported from other machines has failed on CRAYs, it
has been rewritten by clever programmers whose salaries add little
to unavoidable overheads associated with world-beating computers.
If the rewritten code has been obscure or pornographic, nobody
glse has cared who did not have to read it. Or so we have hoped.

How much more has to be paid to develop obscurantist software for
CRAYs than to import egipollent software from a larger community
of computers like those in Table 2 7 Divided differences provide
a case study for this question. Let us consider how much extra
thought a programmer has to put into them after he discovers what
a CRAY will do to them.

Df(x, v} blooms in an environment that tends to drive x and v
together, Wnd when they get close +h& denominator x - v is
compibed other machines; on a CRAY it is as if x or
v had A in bits bhey Hﬂd the last one stored. Meanwhile
f(x) and f(y) approach each other too; generally thelir computed
values are obscured by roundoff, so Df(x, yv) must approach
Junk/(x-y) on other machines, Junk/junk on a CRAY. Not much
to chooge between those. Of course, this cannot be the whole
story because it does not explain why L(y) and V(N, i) are so
acocurate as they are; but it iz a plausible story so far.

One application of Df(x, ¥) 1is te solve a nonlinear equation
f(x) = 0 by Secant Iteration: Fumri T Xn - F(Xn)/DI(Xn, Xn-1)

This iteration is preferred when no explicit formula exists for a
derivative needed in Newton’s Iteration Yo+ = T(xa)/T (xn)
Dtherwise the iterations are similar, comparable in speed and
global convergence properties, except for their vulnerability to
roundoff.

To prevenl the secant iteration from dithering or worse, it
should be stopped as scon a3 the computed value of f(xn) has
become smaller than its uncertainty due to roundoff; how to
astimate its uncertainty will be discussed later. Stopped that
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way, the iteration can be proved to converge to a simple root of
the equation about as closely as the equation determines the root
when uncertainty in f 1s taken into account. Except on a CRAY.

On a CRAY 2 roundoff can diminish (Mn¥n-1) , <causing the next
iterate Xn+1 to fall short; this can slow the iteration or stop
it prematurely. On an X-MP or Y-MP roundoff tends to expand
(X~ %wm-2) , causing the next iterate Xn+r to overshoot; this
can make the iteration dither or, 1if convergence was expected to
be monotonic, stop it prematurely. These extremely unlikely
effects can be significant only when the graph of f is steep and
its uncertainty very small, as when the zero of f comes very
close to a pole, in which case the equation determines its root
more sharply than the CRAY can be expected to find it without
extra logic in the zero-finder to force an extra iteration or two.

Striving for best possible results, the conscientious programmer
will have to fuss over that extra logic. His fuss can improve the
computed root only if it differs from a power of 2 in Jjust its
last few bits, and those are the only bits he can improve.

Most users of CRAYs strive for results that are just good enough
rather than best possible. One of them who has to compute, say,
a divided difference D2f(x,v,z) will test differences among its
arguments x, v, 2 against tolerances that will probably separate
them by at least thousands of units in their last places. Then
the computed value of D2f(x,y,z) will be obscured by errors of
two kinds. The first and most important will be inherited from
error in the data £(...) , and can be estimated from a practical
understanding of the data and its application. The second kind
will arise from the process of differencing and dividing, and
will depend upon the computer’s arithmetic; this kind of error is
the kind a programmer prefers to ignore. Dare he ignore it?

Provided y lies strictly between x and z , but no matter how
close, the differencing and dividing will contribute no more new
uncertainty to D®f than if the data values f(...) had e=ach
been perturbed by a unit or two in the last place of its stored
value. Consequently, the uncertainty in D®f is preponderantly
what inheritance from f(...) deserves; subsequent roundoff can
be ignored, and a little algebra proves it. Except on CRAYs.

Because CRAYs lack a guard bit, theilr differencing and dividing
adds more errcor than described in the last parasgraph whenever two
adjacent arguments x, y, 2z closely straddle a power of 2 . The
affect is roughly as if the values of £ were perturbed by +df/N
where df i1z the change in f across the straddle and N counts
how many floating-point numbers lie inside the straddle. Proving
this claim for CRAYs 1is rather more complicated than proving the
previous paragraph’s neat error bounds for other machines, and
interpreting +d4df/N iz far more complicated too.

Do Physicists ever wonder whether faint creases that flicker in
certain wave-fronts or in fields with steep but steady gradients
computed on CRAYs are due to something other than Physics?
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The Pessimism of Alwost® Right Eryvor Analysis on a CRAY

Error analysis tends to be pessimistic, and more so on CRAYs
than other machines, and you pay for that pessimism when you pay
to develop reliable numerical software. Pessimism comes less from
the error-analyst’s dour personality than from his mental model of
computer arithmetic. At its most extreme, pessimism can condemn
a program that actually works smatisfactorily on a CRAY, causing
it to be replaced by something worse. If yvou believed subtractive
cancellation must produce useless Junk/junk , you would have had
to discard L(y) and V(N, i) above. A more striking example is
A(Z) presented below; it will contain no subtractions at all.

First we examine the mental models of roundoff error analysts use,
to see why they are more pessimistic for CRAYs +than for other
machines. The models interpret the statement " D = A®B * as if
it actually computed either

D = (ABRY(1 + ) or D= AL+ a)y - B(1+ B ,
wherein & is one of the binary rational arithmetic operators

+ o, T * or /’
and a , b and d represent the effects of roundoff, unknown but
no bigger than a known roundoff threshold r . ( 8ee Table 3.)

The first formula, the one with d in it, is a model devised by
W. Givens, J. H. Wilkinson, F. L. Bauer and numerous others in
the first decade of computing as we know it, 1947 - 57. It works
for all operations on all machines listed in Table 2 , and for
maltiplication, division, and addition of magnitudes on CRAYs.

The second model, the one with a and b in it, was devised in
the mid 1960s +to cope with subtraction of magnitudes on machines
like Univacs, CDC’s, and now CRAYs, +that lack a guard digit.

The first model has been spectacularly successful at explaining
the behavior of numerical software and then motivating development
of superior algorithms we now take for granted. So many of its

successes, especlally with matrix computations., have carried
over to the second model that many people believe the models ta be
practically indistinguishable. That belief may have something to

do with the widespread acquiescence to a similar model promulgated
by W. Btan Brown in ACH Trans. on Math. Software T (1981) pp.
445-80, which has affected ADA profoundly and influenced recent
revised standards for C and Fortran. That belief is wrong.

The first model is far more powerful and less pessimistic than the
second. For instance, arithmetic conforming to the first model
is good enough to compute a second divided difference D2f ag if
its data f£(...) had been perturbed only in their last digits; a
CRAY cannot do that, as we just saw above, although it conforms
to the second model. Assuming that In(...) is accurate to full
precision, the first model implies full accuracy for the simpler
version of L(y) above, but the second model implies accuracy
for neither the szimpler nor the pornographic versions of L(y)

Perhaps the second model’s pessimism comes from having two error
terms a and b instead of one d . Whatever the reason, error
analyses based upon the second model tend to over-estimate actual
errors by bigger factors than do analyses based on the first.
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For all its flaws the second model provides programmers with a far
simpler description of CRAY’s subtraction than do its manuals.
The vast majority of applications need nothing more. And a pithy
euphemism summarizes the second nodel:

Almost® Right: 1If you wish to compute f(x, v, z, ...) on CRAYs
vou should instead be satisfied to get F(X, Y, Z, ...) where
each of X, Y, Z, ... differs respectively from x, y, =,
by at most a unit in its last place, and F(X, Y, Z, ...)
differs likewise from £(X, Y, Z, ...} . In other words, vou

should be satisfied with an almost right result for data that
are almost right. That iz what "Almost Almost Right" means.

For a function f continuous in all its arguments, this looks
like a good deal, so good that many a computer professional still
believes that Almost? Right is5 Geood Enough, though experienced
error analysts know why something is wrong with Almost® Right.

Jim Kiernan knows it teoo; that is why he rewrobte CRAY’s 1library
of elementary functions. Many of them used to be at best Almost®
Right, and consequently spoiled the accuracy of otherwise correct
software. For instance, if Ln(...) were merely Almost® Right,
both versions of L(y) = Im(y)/(y-1) above would be inaccurate

for v close to 1 . The reason is that Ln(y) would change to
at best Ln(Y) for some Y almost equal to ¥ , and that would

change L(y) by roughly (Y-y)/((y-1L)y) + O(¥-y)&/(y-1) , which
is almost as big as L(y) when v and Y both almost equal 1

Arithmetic and elementary functions no better than Almost® Right
impede efficlent computational removal of mathematically removable

singularities. For example consider the function A(z) defined
in a short program shown nearby above its graph in Figure 2 . A
removed singularity at =z = 1 leaves it analytic for all =z » 0 ,

and the program is accurate on all machines in Table 2 and most
likely all others too provided their libraries implement arccosh,
arccos and Lo  accurately. { An accurately implemented arccosh
based upon our earlier program L(v) accompanies A(z) .)

If arccosh, arccos and Ln are only Almost® Right, or if yvou
think they are, you cannot trust Version 1 of A(z). Instead
yvou must turn to Version 2. It uses a Taylor Series

ACl+t) = 1/2 - t/6 - ©2/20 + 124+t3/9045 ~ 822114/113400 -
to remove the singularity from an interval 1-T < 2 < 1+T . Here
the threshold T is designed to minimize the worst of two errors:
one i3 from Almost® Right functions, and resembles the error
due to Y-y 1in L(y) above; the other comes from using just
three terms of the Taylor series. The reader is left to wonder
where the series came from -~ its derivation cannot be trivial
if 8221 is a prime --, and whether r = NEXT1(2.0)-1 is &
fair bound for the perturbations Z-z, Y-y, ... in Almost® Right
functions, and why T takes two sawvare roots, and how much time
he would have to spend to find out.

Unfortunately, Version 2 must lose a guarter of the significant

bitas carried by the arithmetic; it loses the last 12 bits on a
CRAY . Yet with Jim Kiernan’s new library codes, and with the

arccosh program here, Version 1 of A(z) was fully accurate.
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Whoever insgists that arithmetic and elementary functions are good
enough if Almost® Right must occasionally put up with numerical
software gratuitously more complex, more costly, and inaccurate.

Programs to Compute A(=z) and arccosh
Written Ostensibly Transportably in a Nondescript Language

Heal Function A( Real Variable 2 ) =
if 2 <1 +then -arctan(Ln{(Z))/arccos(Z)®
else if Z =1 then 0.5
else arctan(In(Z))/arccosh(Z)?® ;
Fnd A . ... Version 1, probably accurate on all machines.

Real Function A( Real Variable Z )
Version 2 is less trusting and less accurate than V. 1.
Constant T = SQRT(SQRT(8x(NEXT1(2.0) - 1)) ;
Return A = if 7 ¢ 1-T7 +then -arctan(ln(Z))/arccos(4)®
else if 7 < 14T then 0.5 - (Z-1)/6 - (Z-1)2/20
else arctan(Ln(Z))/arccosh(Z)® ;
End A . ... Version 2.

Real Function arcocosh{ Real Variable 2 )
Good enough for CRAYs with a good version of L(..), q.v.
U= SQRT((Z-0.5)Y-0.5)%(SQRT((Z-0.5)-0.0) + S@QRT(Z+1)) ;
Return arccosh = UxL(U+1) ; End arccosh.

Figure 2
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Compensated SBummation
As N approaches infinity, the accuracy with which a sum

on = Xo + Xy + Xe + ... t Xa-z + Xn
can be computed iz threatened by a singularity. One way to think
of it is as a singularity at 1/N = O . An ancient computational
technigue exists that removes this singularity without introducing
any threshold that would prevent 1/N  from coming arbitrarily
cloge to 0 for practical purposes; but it can fail on a CRAY.

This all seems so far-fetched that at least one application should
be introduced before the technigue is described. Consider initial
value problems; given v and £(...) find ¥(t) satisfying
v(0) = yvo and dyv(t)/dt = $£(y(t)) for all t > 0 .
The solution to this problem could predict the orbit of a planet
or satellite, the trajectory of a cannon ball, +the state of an
oacillating mechanism or electrical circuit, +the propagation of a
travelling wave down a channel or electrical stripline,

A typical numerical method discretizes this problem to compute
an approximation Y(t) to w(t) as follows:

First a formula F(.., ..) is selected, then a stepsize h > 0
with which to cover a specified interval O < t < H . To simplify
notation we shall pretend that h is constant and that N = H/h
is the numbsr of stepzs needed to cover the +t-interval. (Actually
h could vary so long as it never got excessively bigger than the
average stepsize H/N .} Therefore we treat N as the parameter
at our disposal instead of h

The construaction of Y(...) begins with initialization,
Y(O) = v& t = 0 ;

and then repeats iteratively the computation

Y{t+h) = Y(t) + hx¥F(Y¥(t), h) ; t = t+h ;
a total of N +times, ending with + = H and Y(H) in hand. We
call this a Trajectory Calculation vregardless of whether the
whole trajectory, a sequence of pairs {t, Y{t)}, or just its
end {H, Y(H)} 4is the deszsired result. Think of the computed
trajectory as a sequence of dots close to the true trajectory, a
curve traced out by {t, y(t)} . How close?

The error Y(H)-y(H) has three constituents of which two depend
upon N and F(.., ..) . The first constituent is inherited from
the error in yo and £(...) ; +this is phyesically relevant srror
compared with which we hope to nake rest negligible. Becond
i the Trumcation error TNY, ki in what the srror would be
i e and £(...) were exact and no rounding errors occurred.
Usually T(NY = OQ(1/N)*® , as 1/N — 0 , for some order P > 1
that depends upon how well the formula F(Y, h) samples £(...)} ;
a higher order goes with a ( perhaps Runge-Kutta ) formala that
approaches a suitable average of f£(...) faster as h —= 0

The third error constituent R(N) is due to roundoff. For the
kind of trajectory we have in mind, mneither exponentially stable
nor exponentially unstable, R(N) approaches infinity with N
roughly as shown in the first graph in Figure 3 . Graphs like
that appear in some texts to explain how to minimize the total
errvor E(N) by choosing h or N = H/h " optimally.” Bunk!
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Figure 3 : ERROR IN TRAJECTORY CALCULATIONS

With Conventional Uncompensated Summation

12

R(NJ, T(N),E(N)

0 e
1 N 1000000
With Compensated Hummation
12
|
;z
i
r(N), T(N),e(N) !
)
1 N 1000000
Legend: N = No. of time-steps to trace Trajectory
T =z (Time to trace Trajectorv)/( time-step )
...... T(N) = Truncation srror due to discrete steps
XHKNEN R{(NY = Rounding error in Conventional Summation
r(N) = Rounding error in Compensated Bummation
______ E(N)Y = T(N) + R(N) Total trajectory ervor
e(N)y = T(N) + r(N) for each summation method
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Most of the roundoff in BR(N) comes from the additions marked +
in the iterative computation, and most of that can be suppressed
by Compensated Summation. This was part of the FRunge-Kutta-Gill
method devised by S. Gill in the late 1940s for his Cambridge
thesis. His method worked in fixed-point arithmetic; versions
suitable for fleoating-point were published simultaneously in 1965
by R. Mgller in BIT and by me in Comm. ACM. The idea was to
capture the rounding error in each iteration for feedback into the
next as a correction € thus:

Initialization: Y(0) = vo ; € =0 ; t:=0; ¢ =0
Iterative lcoop repeated N times:
dt = h + ¢ ; DY = hxF(Y(t), h) + C ;
newt = t + dt ; Y(t+h) = Y(t) + DY ;
c = {t - newt) + dt ; C = (Y(t) - Y(t+th)) + DY ;
t = newt . DON’T OMIT PARENTHESES [

The cost of this compensated summation is trifling: three extra
add/subtracts per component computed in the loop, and an extra
array to store € . Its effect is shown in the second graph in
Figure 3. The contribution x(N) of roundoff to total error is
reduced to something practically independent of N provided 1/N
significantly exceeds the roundoff threshold »r of Table 3.

How much is compensated summation woxrth? That depends; it is
valuable only when N is huge, +the accuracy desired is near the
limit achievable by the computer’s arithmetic, and the trajectory
is neither exponentially stable ( it would forget all errors but
the last few ) nor exponentially unstable ( only the first few
errors would matter ). Compensated summation is invaluable for
celestial mechanics, worthless for switching circuit simulation.

Among other applications for compensated summation are adaptive
quadrature requiring unpredictably huge numbers of samples of the
integrand to cops with nearly improper integrals, and slowly
convergent series requiring an unpredictably large number of terms
to converge accurately encugh. Another application ariszes in
languages that allow a REAL wvariable to control a for loop;
that variable, 1like the trajectory’s t , has to be incremented
accurately lest the loop stop prematurely or overshoot its limit.

A proof that compensated summation works needs no more than the
first model of roundoff mentioned five pages back;, see D. E.
RKnuth’s The Art of Computer Programming vol. 2, Seminumerical
Algorithms 2nd ed. (1981) Addison-Wesley, Calif., problem 19,
p. 229 and p. 572-3. Therefore compensated summation works with
all the machines in Table 2 and even with strange arithmetics
that represent numbers internally by their logarithms. But it
fails on CRAYs. Extremely rarely.

A program CMFSUM shown nearby contrives a series 8Sx fTor which
compensated summation fails on a CRAY Dbut, of course, on no
machine in Table 2. The number of additions ig N = 83L , +to bhe
chosen at run-time. Results for L = 1000000 appear in Table 5.
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CHMPEUM: & Program to Sum a Long Series
Programmed Ostensibly Portably in a Nondescript Language

Program CMPOUY:

compares three ways to sum a series of 3% + 1 terms
8 = Xot+ X1+ X2+ ... + Xesn

in which L is a large integer entered from the kevhoard.
88 is the Simple Sum computbted in the obvious way.
8C is a Compensated Sum computed more accurately. ( 7 )
To compare the accocuracies of the two methods of summation,
they are compared with the txrue sum S computed exactly.
The terms X3 are contrived to produce striking results.
Errors are measured in ulps ; an ulp is a unit in the
last sig. digit carried by the computer’s floating-point.

Real A..H, O0..Z ; ... Choose your floating-point precision.

Constants H = 0.5, One = 1.0 , Two = 2.0 , At = 80.0 ;
Long Integers I..N ; ... Fortran convention for integers.
Constant Lmax = 18777215 ; ... +the limit for a CRAY X-MP.
Display( "Key in a positive integer L that will" );
Display( " determine how long the program runs." J);
Reyboard Input L ; if L < 0 +then B&Stop ;

If L » Lmax then 8tep ; ... +too big for a CRAY X-MP.
... Find E = one ulp, the computer’s level of roundoff:

E = (H - NEXT1(H)) + H ; ... = 1.0 - 0.999999...

Digplay( "This computer’s One ulp E = ", E );

Initializations:
55 = One + AtxEXL ; SC = 88 ; 81 := 88 - One ;
Xz = TwoxE ; Xy = 81 + Xz ; C = 0.0 ;
... Summations of 83%L terms X.. :
For J =1 +to 83 do { for k=1 to L do {
X = %Xe - R -Xy ; Xz = -Xy ; Xy = X ;

81 = 81 + X ; C e (True sum &) - 1

PE = 88 + X ... oimple sum S5

Y = C+ X ; T:= 8C ;

B5C = 8C + Y ... Compensated sum §C

C = (T - 8C)y + Y 1%y ... Don’'t remove parentheses!

... Display results and their errors measured in ulps

BS = (((88-H)-H) - 81)/E ; C = (((SC-HH-H) - 81y/E ;
Display( "True sum S ", H+S1+H ) ;

Display( "Simple sum 88 “,88," in error by ",ES," ulps");
Display( "Compensated &C ",8C," in error by ",EC," ulps");
Display( "( One ulp is an acceptable error in 8C .)" );
Stop ;3 End CMPSUM.

HonoH



CcUGe: How CRAY’s Arithmetic Hurts ... June 14, 1990

Table 5 : Results from Program CMPSUM on various machines
Keyboard Input: L = 1000000 ( 83000001 +terms summed )
Roundoff level Ulps error Ex in sums 8Sx
( 1 ulp ) Simple Sum Compensated
Computer Family E BS in 88 EC in &C
IBM 370, 3090 1.39 E-17 =T75000000 0
DEC VAX D format 1.39 E-17 27666666 0
& format 1.11 E-18 27868666 0
TEEE 754 Double 1.11 E~-16 276666066 0
H-P 71B 12 sig. dec. 1.00 E~-12 27666666 0
CRAY X-MP, Y-MP 3.55 E~15 27666667 ~ 27668664
CRAY 2 3.55 E~15 -2T76866667 ETEEERES
CEAY Double (all) 1.26 E-29 27666667 -~ 276666564
These results are atypioal in two respects. First, IEER standard
machines ( H-P 71Bs conform to IEEE 854 ) have statistically
unbiased roundoff, so simple summation rarely accumulates so much

of it and compensated summation rarely improves sums so strikingly
as here. BSecond, compensated summation fails utterly on CRAYs
only for contrived examples. Compensated summation errs typically
by a few ulps on CBAYs versus none or one on the others, never
much more than simple summation, and is usually worth a try.

Software-Simalated Doubled Precision Retarded

Far more serious, but too complicated to discuss at length here,
is how a missing guard digit retards software-simalated DOUBLE
PRECISION invokable from most of CRAY’s Fortran compilers. It
slows programs reportedly by factors from 25 to 45 compared with
ordinary REAL floating-point. There are two reasons for this.

First, CRAY’s simulation aims to be faithful to the style of its
REAL arithmetic on X-MPs and Y-MP=s, omitting the guard bit just
as they do, but with 96 sig. bits instead of 48. 8Software has
to be long, slow and fussy to do this.

becond, CRAY cannot use portable and faster techniques for rough
simulation of DOUBLE PRECISION because they fail on CRAYs in
the same way as compensated summation fails, but muach more often.
The technigues in question are summarized by 8. Linnainmaa in
"Software for Doubled-Precision Floating-Peoint Computations” ACHM
Trans. on Math. Software T (1981) 272-83. They would run at least
twice and more likely thrice as fast as CRAY’s simulation if
they could be used safely. Which brings up a horrible thought:
Programs thalt use compensated summation, or similar methods
described by Linnainmaa, to galin extra accuracy contain no
tell-tale signs to warn the uncomprehending reader that they
work on all machines in Table 2 but fail on CEAYs.
What would happen if software, highly regarded elsewhere because
it benefits from those methods, were imported by well-intentioned
ugsers to CBAYs? Casual testing is unlikely to expose the risks.

The thought is too horrible.




CUG7 How CRAY’s Arithmetic Hurts ... June 14, 1890

CRAY’s MULTIPLICATION AND DIVISION

CRAY’s floating-point multiplication is fast but somewhat ragged;
and since CRAY’s floating-point division Y/X is composed from
a product (1/X)%Y , division is ragged too. Unlike almost all
other computers, whose products and gquotients are alwayvs either
correctly rounded or chopped, CHAYs suffer from bigger rounding
errors. Theilr source is CEAY’s abbreviated multiplier hardware,
which saves a little time and space by dispensing with almost 36%
of the bits that other conventional multipliers produce internally
in the course of their operation. The abbreviation is now done in
a commutative way ( X¥Y = YkX )} +though long ago this was not so.

Different CRAYs attempt to conpensate for that abbreviation in

different ways. Some have an " *F " multiply instruction that
tends to under-compensate; some have an " ¥F "  instruction that

tends to over-compensate; some have both, and then the compiler
chooses them mostly in accordance with programmers’ directives.

Division Y/X entails usually 4 instructions on a CRAY ;
> eztimate a reciprocal K = 1/¥ to 30 sig. bits,
> obtain a correction factor € = Z2-EKE¥X > 1 , and then
>3 compute  YXR¥C  in liew of Y/X .
The last product can be computed as YXR(R¥C) , which tends to be

more reliable, or as (YXRY*C , which can be faster when Y*R
and C can be computed in parallel. The last two multiplies can
be #Fs or ¥Fs. Alzo uvnecertain is the approximate reciprocal R ,

which can vary very slightly from one CRAY model to another.

Since different CRAYs and different compilers have been known to
get different results from the same Fortran program and input
data, generalizations about CRAY’s rounding error must cover a
spread like the entry after "CRAY" in Table 3.

We shall describe the error in ulps ( units in the Iast place ).
¥ maltiplication is known to err often by over 1 ulp but never
by more than 1.23 ulps. *& multiplication errs by under 0.83
nlp. CRAY’s division errs over twice as much as multiplication;
I do not vet know division’s worst case errors,. { At this CUG
meeting, CRAY’s Jim Kiernan reported finding errors almost as
big as 2.5 ulps by random testing.) A complication peculiar to
CRAYs is that their errors in expressions X*Y and Y/X depend
upon both X and Y rather than just the ideal values of X*Y and
Y/X regpectively, as 1s the case for machines in Table 2, none
of whose operations err by more than 0.5 ulp if rounded nor as
mach as 1 ulp if chopped.

Measured in wulps, CRAY’s errors exceed what might bhe expected
from any other machine by so little as appears not to matter. In
fact the excess is more than enough to derail numerous programs
that have been proved, both in practice and in theory, to work
reliably on all other commercially significant machines. There
is more to roundeff than its magnitude. Rounding errors are not
random but correlated by mathematical rules upon which successful
programs sometimes depend for thelr success, and upon which many
a programmer depends because his mental model of arithmetic,
based perhaps upon experience with calculators, takes those rales
for granted.
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To describe the effects of roundoff, we shall let brackets [...]
distinguish a computed value from an ideal value of an expression.
For instance, we shall write [Y/X] for the value {[Y®%[R*¥C]] &
CRAY cowmputes in liew of Y/X . Only CRAYs can get [X/X] 7 1
for nonzero finite X ; %F multiplications vield [X/X] < 1 at
half of randomly chosgen values ¥ ; an *F and then #F wvield
[X/X] < 1 at about one X in 6 but [X/X] > 1 at one in 33 .
Only on CRAYs mwmust [21.0/3.01 be a non-integer; with two *&s
it is  7.000000 000000 03553 , otherwise 6.999909 999999 96447

What comes to mind is a signature, a way for a program to learn

at run-time whether it is being executed on a CRAY regardless of

its serial numbser or its compiler. Compute both expressions
(62.0%63.0)Y/63.0 and (63.0%83.0)/63.0 ,

and if neither is an integer then the computer is probably a CRAY

or infringing CRAY’s patents. ( Thanks to Alex Liu.)

AMODL  Misbehaves

When X and Y are positive, the Fortran remainder function
AMOD(Y, X} = Y - X¥(integer part of Y/X)

is expected to satisfy 0 ¢ AMOD(Y,X) < ¥ . CRAY’z AMOD used to

violate this constraint frequently, whe 5

v OHAY s current {(and
alower) AMOD  alwavs conforms Lo expec ons ds not vel known.

8 [ LIPS T
[y e Teoonble

e M AAT S 2 SR
FProf., J.&, Sethian wiszhed to compute one of the angles in a right
triangle with sides X and Y not both zero. Two mathematically
aguivalent but computationally different formulas were considered:
Angle = PI/2 - ATAN( Y/ABB(X) ) , and
Angle = ACOS( Y/CQRT(YXY + X*kX) )
The first formula malfuncticned at X = 0.0 on machines with no
Infinity, and inserting a test and branch for 0.0 seemed so
high a price to pay for such a rare event that Sethian opted for
the second formula, which appeared robustly portable. But when
he ran his program on a CRAY it sent him an obscure message that
he decoded, after a week’s help from local CRAY engineers, as
" o Invalid ACORS( Argument > 1 )y."

Experiments with both *# and *F now reveal that [Y/[SQRT[Y*Y71]]
exceeds 1.0 at roughly 7% of randomly chosen arguments Y on
CRAY=s. Before condemning Sethian’s naivety in neglecting to
first test the validity of ACOS’s argument, reflect on this:

On all commercially significant machines except CR4Ys,

-1.0 ¢ [Y/(SQRT{[X*xX] + [Y*Y]311] < 1.0

is provably valid despite five rounding errors, though the

proofs for binary, for hexadecimal ( IBM 370 ), and for

decimal ( calculator ) arithmetics do differ.

S0 testing the argument of ACOS is necessary only on CRAYs.

L
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Monotonicity Fails

The worst aspect of CRAY’s arithmetic is our uncertainty about
its properties, rather than itz specific ulp-bounds. Consider
Monotonicity, for example. With conventional arithmetics, if
AxX > B¥Y in exact arithmetic, then the computed values must
satisfy [A%X] » [BxY] , and if A/B > Y/X +then [A/B] > [Y/X] .,
despite roundoff. CRAY’s arithmetic is not monotonic this way,
with consequences that are worse than annoying.

A Quadratic Fquation becomes Unreal
Suppose that the coefficients A, B, C of a gquadratic eguation
Az®- 2Bz + (0 = 0 have been derived in such a way as assures
physically meaningful real roots; that means that coefficients in
memory would satisfy B2 » AXC 1if this could be computed exactly.
The expression SQRT(B*BE - A¥C) will be encountered in the course
of computing the desired roots, but it must be computed with four
rounding errors. On conventional computers, [BxBY > [A%CT , =0
no precantion need be taken to avoid stopping with a message like
Yo Invalid SQRT( Argument < 0 ) .
But precautions are mandatory on CRAYs. For instance, if

A = 33B54432%167T7T216 = p4° = 4032 800000 000000 ,

B = 16777215%18777217 = 24® - 1 = 4030 FFFFFF FEFFFFFu and
C = 10610063%13264529 = 247 — 1 = 402F FEFFFF FFFFFEn , then
D = BXB - AxC = +1 in exact arithmetic.

Otheyr computers’ D = [[B*¥B] - [AX%C]] > 0 ; CRAYs’ D = ~248
when *F multiplication is used. If *F is used, +try

T = 10610063%13264529 + 1 = 247 = 4030 800000 000000 ,
A = 2%78398858 + T = 4030 800009 589Y2EHm ,

B = 3386665%0H8769639 = 4030 B504FF FFFFFFu and

C = 2%(A - 9971313 = 4031 800008 COBCT75m . Then

D = BxB - AxC = 1550789 in exact arithmetic.

Other computers’ D = [[BxB] - [A%C]] > 0 ; CRAY’s D = -248
Therefore on CRAYs something slightly more complicated than the
expression SQRT(BXP - A¥C) must be used even though this one
malfunctions so rarely that instances of faillure are practically
impossible to find by the usual methods for testing programs.

Imagine now that this simple expression appears in a program with
an impeccable reputation on IBM 3090s, DEC VAXes, Suns, etc.,
and with a published proof of correctness as part of its pedigree.
And suppose the program is imported to a CRAY by a conscientious
user who first runs tens of millions of test cases before passing
the program around among his friends, who incorporate it deep in
the bowels of their own work. Many months pass; then something
strange happens. Whose fault is it? Who will have to repair it?

Simple Specifications rendered Complicated
Suppose a program must be written to compute a continuous function
Z = Z2(X,Y) according to the following specifications:

81: Floating-point input data X and Y will be non-negative;
and X <Y more often than not.

g2: If X >» Y then 7 = Xkarctanh(Y/X) + Y¥in(arccos(¥/X))

& Z = XKkIn(2)
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8§3: The program should invoke, from the run-time Math. library,
high relative accuracy implementations of the functions
arctanh(@) = In((1+Q)/(1-Q))/2 and
arccos(@) = 2 arctan(sqart{((1-9)/(1+Q)))
that may well use machine-dependent formulas, different
from those shown here, to ensure accuracy for all @
84: Division may be slow; do not waste time computing guotients
Q= Y/X that will not be used when X < Y
85: The program must be portable to a wide variety of machines,
among them some on which Infinity 1is unavailable for
arctanh(1l)y , 1In(0) or Y/0 , so avoid computing thess.

Why can’t the program consist of just the short statement in 82 ?
That program works correctly on practically all computers with
built-in division hardware because they alwavs compute rounded or

chopped quotients @ = [Y/XT1 < 1 whenever X>Y > 0 . The
proof is easy: c¢all the computer’s number next less than 1.0
U = NEXT1(0.85) = 1.000...000-0.000...0001 ;

evidently Y ¢ U%X 4in exact arithmetic, so Y/X < U and hence

monotonicity would imply ([(Y/X] < U < 1 , as claimed.

CRAY=s are the exceptions; occasionally they compute f¥/¥1 = 1
when X > Y » 0 , and whether they can possibly get [Y/,x1 » 1

is not yet known. Therefore a short program derived too directly

from B2 will occasionally attempt to compute arctanh(l) and

In(0) on CRAYs, and may for all we know be capable of asserting
" Invalid ARCCOS( Argument > 1 ) .

Other machines are provably incapable of such misbehavior.

How would you program a portable and accurate computation of Z 72
( Do not let relative accuracy evaporate when Z 1is near 0 .)
Will your program be portable to CRAY X-MPs, Y-MPs and 2°s 79

How long will you spend on this task? Who will pay you for it?

Paranoid Programmers

Programmers cope with the uncertainties of CRAY’s arithmetic by

introducing extra defensive ( not to say parancoid ) tests and

branches to guard against rare events that never happen on other
machines. hese expedients inflate the cost of developing, using
and maintaining numerical software for ©Science and Engineering:

- Tests involve roundoff-related thresholds that take programmers
extra time first to determine, and later to change.

- Tests and branches increase the programs’ capture cross-section
for programming errors which first prolong debugging and
then undermine confidence that debugging is complete.

- Tests against rare data-dependent events erode programs’ speed.

i

Worst of all for CRAY users, numerical software first developed
and proved vrveliable on other machines cannot be used confidently
on CRAYs without prior scrutiny for obscure malfunctions. These
malfunctions occur far too rarely ( perhaps only for " contrived
data ") to be exposed by casual testing, yet not rarely esnough
to be ignored.
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Accuracy (Eps) wvs. Precision

On computers other than CRAYs, the accuracy of each arithmetic
operation can be inferred from the precision to which results are
stored; each operation is accurate to 1/2 ulp if rounded the
way better binary and decimal calculator arithmetics do it, 1 ulp
if chopped the way IBM 370 hexadecimal arithmetic does it. On
CRAYs, arithmetic operations can err by rather more than that,

as we have seen and recorded in Table 3. Consequently, software
that depends upon relations between accuracy and precision, or
presumes that addition, subtraction, multiplication and division
are all aboult equally accurate, can malfunction on CRAYs.

Gauging the precision of numbers in memory is a comparatively easy
sxperiment to perform at run—time, and many published ostensibly
portable programs perform it more or less reliably. One of thenm
is the function subprogram NEXT1(X) supplied along with RATAREA
above. On practically any computer, CRAYs and all those listed
in Table 2 included, the floating-point numbersz adjacent to 1.0
are NEXT1(0.5) and HNEXTi(2.0) . Hence the relative precisions
of numbers in memory, measured by the half-widths of gaps that
separate them, lie between

PrecUnderl = 0.5%( (0.5 - NEXT1(0.5))y + 0.5) and

PrecOverl = 0.B%(NEXT1(2.0) - 1.0) .
The ratio PrecOverl/PreclUnderl is the computer’s floating-point
radiz, 2 for Dbinary, 10 for decimal, 18 for hexadscimal
arithmetic. Precision ( but not Accuracy ) 1is related to the
number of significant radix-digits stored thus:

2 D*Pr@oUnderl - (I‘(E!di.?{) =N, of Sig. Diglts of Precislon Stored)

See the second and third columns of Table 3 for examples.

Accuracy can be no better than Precision, and may be worse if
arithmetic is not rounded in the best way. On most computers the
accuracy of arithmetic depends solely upon whether it is rounded
or chopped and can be determined in an ostensibly portable way at
run-time from one experiment with an arithmetic operation, say
maltiplication, thus:

Compute bound Eps for relative error due to rcoundoff:
B = 2.0%PrecOverl ;

P = (1.0+E)%(1.0-E) ; ... = [1-EFE2] rounded or chopped.
Fps = 1if (0.5-P) - 0.5 = 0.0 +then 0.5%E else &

Computed this way on any machine listed in Table 2, Eps 1is a
tight upper bound for the relative error committed by any rational
floating-point operation. Eps works because all those machines
either round correctly or chop the way IBM ’370s do. Alas,
nothing so simple works for CRAYs.

On CRAYs, different operations have different error bounds whose
estimation in & machine-independent way would reguire an elaborate
test suite far more devious than the simple computation above. No
applications programmer should be expected to embed such a suite,
not even 1f he knew it was needed, in a would-be portable program
that depends upon Eps
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The Importance of the Relative Rounding Error Bound Eps

How might numerical software depend upon Eps 7 FPortable progranms
that compute special functions from their infinite serieg can use
Eps to decide how many terms are necessary to achieve results as
accurate as the machine deserves. A portable program that solves
an equation by iteratiocn can use FEps to decide when to quit
iterating rather than waste time dithering over a solution’s last
few digits that are probably obscured by roundoff anyway.

Why compute Eps at run-time? Why not let a user insert Eps as
a constant into the program? That seems more efficient. But few
users know their hardware well enough to choose Eps correctly;
and fewer read all the programs they use closely enocugh to learn
when Eps is needed and where. Much valuable numerical software
is distributed in source form over a network of diverse computers,
often to be recompiled and used without sentient scrutiny unless
warnings appear at compille-~time or anomalies appear at run-time.

Why not let compilers be responsible for Eps ? This is the gist
of what are called Environmental Inguiries that have begun to
appear in standardized programming languages. Alas, language
standardizers seem to think that roundoff is characterized by the
precision of numbers in storage. They confuse Eps with smaller
numbers PrecUnderl and PrecOverl that we derived above directly
from NEXT1(X) , so what they call Eps tends to underestimate
the effects of roundoff on CRAYs.

Stopping Criteria Confounded

Secant Iteration Lert, T Km — F(em )} (Ko~ Ea—1) /(L (xn)~F(Zn-1))

is one of many wayvs to solve an eguation f(x) = O nunmerically.
When should iteration be stopped? UOne stopping oriterion walts
until the iterates xn have settled down in some sense; but they
may never settle down if the computed values of f(x) are too
hadly obscured by roundoff. Even if some program logic forces the
iteration wltimately to stop, many iterations can be wasted on
futile attempts to compute the desired solution more accurately
than roundoff in f(x) allows. .

Better stopping criteria take account also of whatsver is known
about uncertainty in f(x) . If computable at a tolerable price,
a bound E(x) for error in f(x) due to roundoff can serve to
stop iteration whenever the computed value of f(xn) is no bigger
in magnitude than E(xn)} . Further details applicable when f£(x)
is a polynomial appear in "A Stopping Criterion for Polynomial
Root Finding” by D.A. Adams (1987) Comm. A.C.M. 10, 855-5. Here
the partial fraction expansion of a rational function f(x) will
he discussed instead, for reasons that will be clearer later.

Let f{x) = ba/{aa-x) + be/(as-x)+ ...+ bha/({an—x) + ¢ where
41l bn are nonzero and every an distinct. Here is a program
that computes simultanecusly F = £(x) and E = E(x) +to bound
the contribution of roundoff; id.e. B(x) 2 IF - £(x)!}
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Fize¢c; E:=0;
For m=1to N do {

8 = bn/(an-x) ; ... most time is spent here.
F = F + 0 ;
E = 2.0xiQ} + E+ {F} 1}
E = EXxBEpsg . ... uses the ryoundoff bound Eps above.

On practically all computers roundoff in F never exceeds E but
often approaches it, 8o zgtopping jiteration when IF! < E avoids
wasteful dithering. The exception is a CRAY, on which this
program’s K is too small for two reasons. One is that IEps is
too small when computed in the ostensibly machine-independent way
dezscribed above; it should be roughly doubled to be valid for all
CRAYs. More serious, the formula for E 1is invalid for machines
like CRAYs +that lack a guard digit in subtraction; to correct
E  the subexpression " 2.0%iQ! " has to be replaced by

0 2.5+ (Hant Fixl)/tan - x) 3RIQL
which is far more expensive and produces a bigger bound E hardly
aver approached by roundoff. Without the corrections, roundoff’s
contribution to ¥ can easily exceed E on CHAYs on which, in
consequance, F  can sometimes consist entirely of roundoff and
still viclate the condition F! < E . Subsequent iterations on a
CRAY may well dither or, worse, Jjump away from the desired root
only to stop after reaching some arbitrary limit imposed upon the
number of iterations by a parancid programner.

In short, because a CEAY’s accuracy 1s not correlated with its
precision in the same way as on other machines, some risk exists
that an ostensibly portable program which is provably reliable and
efficient on other machines will run too long on a CRAY and then
stop with an inaccurate answer. Such mishaps must be rare, but
devils to debug. And the debugged program may be uneconomical to
run on a CRAY or on anvthing else. Another such case follows.

An Apolosgy to Language Inplementors
This is a good way to fill an otherwise blank gquarter page.

fxasperated, I have at times railed at well-intentioned but
ill-informed compiler writers for hurting engineering and
scientific computation as much as computer arithmetics
designed with no thought for anything but speed. However,
conpiller writers have to cope with those arithmetics too.

At times they try to reconcile the irreconcilable: ambiguocus
comparisons, dubious environmental parameters like Eps, a
tenpting Toptimization” that alwavs rung faster but pext

haps
oI VEery rare ooo urataly ov 1 WA

Y himes forgiveness, and
. k3l e than usually get. T commend Lo their
attentlion & paper "Compller Support for Floating-point

Computation” by Charles Farnum in  SOFTWARE - FRACTICE AND

EXFEEIENCE 18 (1988) 701-9.

X

£
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AMOTHER PROGRAM WE CAN’T HAVE

CRAY= run most matrix computations faster than almost every other
machine, but there are exceptions. One of the newest programs,
one that runs faster on every computer than all competing methods,
runs inaccurately only on CRBAYs. Therefore its distribution to a
larger community of computers that can run it well is in jeopardy.

Parallel computation of all eigenvalues and eigenvectors of real
symmetric matrices has challenged numerical analysts for more than
a decade. Until recently, there seemed to be no way to guarantee
the orthogonality of eigenvectors computed on multi-processors in
parallel without extensive communications. Trouble arises because
computed sigenvectors can be rotated by angles of the order of
roundoff/(difference between eigenvalues) ,
g0 near-coincident eigenvalues have eigenvectors we dared not try
to compute concurrently on independent processors each ignorant of
the effects of the others’ rounding errors.

To defeat this trouble, we have learned which rounding errors
most affect the eigenvectors, and how to correlate roundoff on
different but identical processors so that orthogonality of all
eigenvectors can once again be guaranteed. The most recent report
on this subject is "“On the Orthogonality of Eigenvectors Computed
by Divide-and Conguer Techniques" (May 3, 1990 by D. C.
Borenson and P. T. Peter Tang, the first at Rice University,
Houston TX 77251-1829, +the second at Argonne Naticnal Lab.,
Argonne IL 60439-4801. In their Concluding FRemarks they say

" Finally, it is unfortunate that neither Reform nor Acc_Sec (the
two new methods they compare) would work on machines whose
arithmetic subtraction lacks a guard digit (or bit); notable
examples are Crays and CDCs. It is even more unfortunate
because, despite the many anomalies those arithmetics offer,
merely adding a guard digit (or bit) would allow Acc_SBec (their
best method) +to work. The ultimate misfortune is that robust
programs such as Acc_Bec may never appear in a federally funded
software library such as LAPACK simply because the program may
not run on a few aberrant machines whose manufacturers have not
implemented the extra guard digit in their hardware."”

Thelr assessment cannot be faulted. I shall try to explain the
main political and numerical facts uvunderlying their assessment so0
that readers of this document can better judge its significance.

Federal subsidies for the development of numerical software derive
in part from a Congressional inclination to foster American
supercomputing. Subsidies are as indispensible here as for public
transportation and the interstate highway syvstem. Administrators
of some research grants have interpreted the mandate of Congress
to imply that all subsidized software must be portable to all
American supercomputers, CRAYs among them. Unfortunately that
policy hurts the larger community of computers listed in Table 2
by precluding support for software that exploits good arithmetic
properties they all possess but CRAYs do not. That policy is so
unwise that it has to change, and indications are that it will.

Why do the new seigenvector algorithms fail only on CRAYs? How is
Tailure traceable to subtraction’s lack of a guard bit? The task
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is to compute accurately the differences between the roots of the
equation f£(x) = 0 and the coefficients an that appear above in
a partial fraction expansion for f(x) . Those differences serve
as divisors in the formulas for eigenvectors. Since all bn » 0O,
the roots in guestion alternate with the an and can come awfully
close when some bn are tiny, so the displacemsnt from each root
to its nearest an 1is the variable manipulated instead of x

This entalls the computation of differences am- an ; these have
to be mutually consistent especially when small, which is where
lack of a guard bit first causes trouble. But worse is to coms.

If data and results are declared REALXE8 , a small but critical
part of the computation has to be performed to roughly REAL*1G
accuracy. Most computers, like CRAYs, must simalate REALX16
in software; most compilers, unlike CRAY’s, offer no support
for REAL%18, so simulation has to be performed using exclusively
REAL*8 variables. Many ostensibly portable algorithms simulating
arithmetic to roughly twice the accuracy of the hardware have been
published over the past two decades; all but one fail on a CRAY
for lack of a guard bit. The exception, based upon a suggestion
in my paper "A Survey of Error Analysis” in the proceedings of
the IFIP Congress of 1971 in Ljubljana, runs so much slower
than the others that it is uncompetitive. That is why Sorensen
and Tang chose for Acc_Sec a REAL*¥16 simulation that fails on
CRAYs +though it is provably fine for all machines in Table 2.

An obvious remedy comes to nmind: distribute two versions of
Acc_Bec, one for CRAYs and the other for everyone else. The
CRAY wversion can use REAL¥18 explicitly where the other just
aimulates it. Aside from its nuisance and expense and politics

{ how many manufacturesrs are entitled to their own versions of
software developed at public expense? ), this remedy has a flaw:

Because CRAY’s REAL%16 scoftware is so slow, CRAY’'s version
of Acc_S8Sec would run substantially slower than the costensibly
portable version runs on a CRAY. After a while some innocent
user, whose CRAY is just one of many different machines on a
network, will transfer a major applications code, containing
the ostensibly portable version of Acc_bec buried deeply inside
it, to his CRAY and, after casual testing that excludes close
scrutiny of the zource code, will conclude that it runs faster
and scarcely less accurately than all competing software. A
calamity 1s Jjust a matter of time; who will be blamed for it?

To defend against calamity, +the program could try something like
If (1.0 - NEXT1(0.858)) Z£ ((0.B-NEXT1(0.56))y + 0.5) +then {
Protest("This computer lacks a guard bit for + and - .");
Crash and Burn }
which usually detects the lack of a guard bit unless compile-time
“optimization” 1is over-zealous. Is the remaining risk tolerable?
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MOST EXCEPTIONS BE FATAL ERBORS 2

Exceptions arise in situations like (...)/0.0 , SQRT(-3.0) ,
(10000.,0)x%61T  ( overflows ), (0.0001yxx817 ( underflows ) ,
and many others. What makes them excepticnal is not that they are
arrors in the sense of Sin but that the computing ambience may
be unable to cope with them in wayvs that serve every legitimate
interest, In short,

Cnly Exceptions handled badly are BEBrrors.

bome readers will wish to debate this wmotion. I wish to persuade
readers that CRAYs do handle excepbtions badly, and that better
possibilities are feasible and worth—while. Two pregnant examples
will be presented; a thorough discussion must be deferred.

et H = 0.5 and U:=z=H +H ; 8o U=1.0, but don’t tell it
to the compiler. Can you find positive floating-point numbers C
for which

( (UkCyXH)Y*H overflows, but a bigger expression
((HXC)Y*U + C)xH does not?
Only on a CRAY . In unoptimized Foxrtran, +try C := D + D for

4.014(2.0%%8187) <« D < 5.32%(2.0%%B187) .
That will do it. This suggests that CRAY’s overflow threshold
is ambigucus, obscuring the answers to questions like

=>» I1f my program malfunctioned because of overflow,
how big must some intermediate result have become?
What data can cause overflow in my program?
->» How wide a range of data should my program have to handle?

)

In general, CRAYs treat overflow fuzzily, as if numbers that
nearly overflow were believed to be invariably symptomatic of a
computation that will have to stop sooner cor later anvway eilther
baecause the program’s design is mistaken or because input data has
been chosen in bad taste.

A false belisef has produced a bad policy. &Situations do arise in
which, for reasonable data with reasonable results, a reasonable
program will founder in unavoidable overflows or other exceptions
unless it is encumbered unreasonably with precautionary tests that
could almost all be eliminated if computers handled exceptions in
a reasonable way. The example below was drawn by J. W. Demmel
from the LAPACK project.

To compute an slgenvector w of a matrix B after its eigenvalue
b has been located, one must solve (B-bl)vy = v for v with
a right-hand side v that is not critical so long as it is very
tiny ( o would be nice ) while w i3 not. This is feasible
because (B- bI) must be singular or nearly so; that is what

"b is an eigenvalue of B Y means.

The solution process begins with Gaussian elimination tantamount
to factorizing (B -DbI) = PLWU where P is a permatation matrix
induced by pivotal exchanges that conserve numerical stability, L
is a lower triangular matrix with 1 's on its diagonal and no
bigger magnitudes below, and U is upper triangular with the
pivots on its diagonal. Bince det(P) = +1 and det(L) = 1 , it
will come as no surprise that U must be singular or nearly so,
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Just as (B-DbI) is. 1In fact, +the better b approximates an
eigenvalue, the more nearly singular U +tends to be. Indeed,
should U bhe exactly singular becauzme a diagonal element has
vanished, +the following process will simplify; but luck that
good is rare and can be ignored here.

All that remains is to perform, say, back-substitution to

solve v = w for the eigenvector v with any right-hand side
w = Py that is very tiny while v 1is not. Typically, w can
consist of random numbers comparable in size with the rounding
error threshold » , though normally we do better than that, and
then v consists typically of numbers of moderate magnitudes.
Finally, v is divided by its biggest element to normalize it.

The foregoing process can fail because of intermediate overflows
aeven though none of B, b or v is extraordinary. SHuch failures
are extremely rare; on a CRAY they may never happen unless B’s
dimension exceeds a few hundred. The simplest failure mode arises
when each element of v except the first is far tinier than the
element before; since the elements of v appear in reverse order
they can grow past the overflow threshold before the program has a
chance to divide by the biggest.

The remedy is clear; whenever overflow occurs, mualtiply all the
aelements of v and w computed so far by a tiny number, perhaps
. and resume computation at the element that overflowed. Even
though the overflow test resides ocutside the innermost loop, this
turns out to be awkward if not impossible to program in CRAY’s
Fortran without severely retarding the speed of normal caszes.

How can the program discover whether overflow occurred and then
branch to the correct place without forestalling the scheduling of
concurrent operationz? The danger to avoid iz to ask whether an
unfinished vectorized operation has overflowed, and be told it
hasn’t when it will. The nuisance to avoid is waiting for that
operation to complete before starting anything else. The hardware
seems not to preclude a program that steers between these hazards,
but currently it probably cannot be written purely in Fortran.

To begin with, CRAY Zs seem to handle exceptions differently
than other CRAYs, though I am not sure how. 8econd, signals
to and from the operating system are involved, something that is
provided for in C but not in Fortran except via € . Then
there are dangerous interactions with compiler optimizations that
have to be prevented in clumsy ways because CRAY Fortrans know
nothing about €’z signals.

LAPACE has abandoned this problem, wmaking no attempt to recover
from overflow nor to forestall it ( which would waste too much
time on tests and branches ). Users will have to take their
chances which, considering the Risk Eauation, can only worsen
with the passage of time.

The fault does not lie exclusively with CRAY. Humane handling of
sxceptions is not a high priority in a computing industry which
has vet to agrsese upon their names. CRAY 13 merely somewhat worse
than the current norm. { Apple is currently best! )
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CREAY, however, 1is very visible to the industry. Because CRAY’s
exception handling is so primitive, it sets a bad example for all
others to follow. For instance the Inmos T200 Transputer claims
to conform to IEEE 754 although it has elided three flags ( one
for Invalid Operations like 0.0/0.0 , one for Overflows like
1000, 066 (1000%%2)  that produce inexact infinities, and one for
Divisions-hy-Zero like 3.0/0.0 +that produce exact infinities )
into ome flag just as CRAY has done. Hence a continued fraction
that signals a division-by-zero, whose infinity later turns
harmlessly inte 0.0 by division, is indistinguishable from more
dangerous indeterminate expressions like ©0.0/0.0 +that turn into
a NaN ( Not-a-Namber ), unless the machine is trapped and run
back over potentially offending operations in a kind of slow mode.

Another bad example is the Intel 860, which handles exceptions

in a different way about as primitive as CRAY’s. Also the 1880
does division in software letting users chooszse between very slow

but correctly rounded division or moderately slow division about

as bad as CRAY’s. The problems the 1860 presents to compiler

writers boggle my mind but I can still see CRAY’s influence.

In the absence of thoughtful leadership, the industry will drift
into a situation where everyone’s exception handling is primitive
and different, and automatic exception handling in portable
software is commercially impossible. Users who have to face data
that precipitates exceptions will be presumed to have been served
by software so0 hardware-dependent and so slow that it will not vet
have been written.

RECOMMENDATIONS FOR CHANGE

The first recommendation, and an urgent one, is that a guard bit
be appended to CRAY’s add/subtract hardware, which would then
operate thus:

Steps in  Guarded Subtraction D:= A-B

81: Bwap if necessary to get 1A} > {B!

§2: Ghift B’s sig. bits right enough to equalize exponents.

83: On a CRAY 2, round off B’s saig. bits past A’z  49th.
On a CRAY 7-MP, discard B’s sig. bits past A’s 49th.

84: Subtract what is left of B from A

B5: Shift left or right to normalize the difference.

B6: Discard any bit past the result’s 48th.

'he change consists in numbers " 49 " that used to be " 48 .
Tte impact upon CRAY’s  existing correct codes will likely be
imperceptible or ¢lse almost certainly improve them a little.

e
)

Further, nis change should be retrofitted to all current CRAYs.
Otherwise, since software for CRAYs is probably expected to run
(after recowmpilation) on a&ll CRAYs, no market would exist for
new software that exploited improved arithmetic, so nothing much
would change after all. Keeping all CRAYs no more diverse than
they are already helps spread the cost of promulgating numerical
software over the widest possible markst.
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Objectors to retrofitting may cite the substantial costs entailed
by any change whatever. The revalidation of certified codes comes
to mind at once. However, since continual change has been going
on to correct bugs in hardware and ( nore often )} compilers,

and since the CRAY 2’5 floating-point arithmetic already differs
from the others by more than enough +to jeopardize validationsz that
were conducted in ignorance of the difference, the costs of the
change I propose seem tolerable considering the actual cost now of
computing on CRAYs. Besides, proper validation should include
more than a battery of test cases; error analysis should be part
of validation too, and that part is eased by the proposed change.

Onﬁ way to compensate for »if ﬁh: a would be to offar a
. alternative e the WELE LCTATION dvi+%wﬁt€g
iy ; faatQT ternative would be

fast, but not so accurate as the present
under the influence of the new guard bit.

The second recommendation could cost an order of magnitude more to
implement than the first, and would probably deliver an order of
magnitude less wvalue; but it i1s still worth-while:

Repair multiplication and division.
The multiplier array should be expanded to produce more nearly a
correctly rounded result. Thiz would complicate the multiplexer
that chooses whether to normalize the final product by one bit,
since rounding would be included. The present round-before-shift
is unsatisfactory. Only ¥F multiplication is specified here;
*F can do whatever comes naturally.

Having repaired multiplication we can address division. As it is
now, division Y/X starts with a rough reciprocal R = 1/X +that

is biased low; s0 € = 2 - B*X » 1 . This gratuitously loses a
sig. bit. With an improved multiplier, it becomes worth-while to
bias R slightly high, and then get C < 1 . Then the compiler

should use *F multiplications, instead of one & and one ¥F
to get a better quotient Y¥(R*C)

The third recommendation is that exception handling be improved,
in both hardware and software, +to an extent that will not likely
affect existing Fortran codes adversely after recompilation,
but should offer considerably improved functionality. Lacking
adequate knowledge of the present state of affairs, a wish-list
is all I can offer.

I wish for a return to the CDC 8800’z Infinity and Indefinite,
but more along the lines of the IEEE standards’ Infinity and
NaN . These should be correlated with amendments to compilers
that would ensure correct comparisons involving those symbols.

The possible utility of a signed zero, valuable for conformal
maps of slitted domainsg in fluid flow calculations, would have to
be balanced against its possible disruption of comparisons.
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The one flag that now catches all exceptions should become two to
distinguish creation of Infinity from creation of a NaN, but
eliding division-by-zero with overflow is probably acceptable.
Finally, Retrospective Diagnostics should be provided; this
amounts to a record of flag-ralsing exceptions compactly hashed
by silte in the program. Details some other time.
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EPILOGUE: June 1991
An abbreviated version of the foregoing material was presented to
the CRAY Users’ Group (CUGY at their meeting 10 April 1980 in
Toronteo, Canada. Later in that meeting, after I had departed,
the Group framed a petition to CRAY asking that

1) The accuracy of the math. library of transcendental functions
be improved.

2) CRAY adopt IEEE Standard 754°’s arithmetic some time in the
future, preferably soon.

3) CRAY retrofit the guard digits missing from add/subtract and
multiply in its present hardware, as suggested above.

Bubsequently CRAY did improve substantially the accuracy of its
math. library., and announced that the format of IEEE 754 but
not all of its functionality would be adopted in some future CRAY
machines. However, CRAY declined to retrofit anything.
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