

way Research has long recognized that high-perrormance naraware musr oe
complemented with high-performance software to achieve the ultimate in high-
speed scientific computing. Having pioneered the development of automatic
optimmg and vectorizing compilers with the CFT Fortran compiler, Cray
Research now proudly offers the CFT77 compiler, which represents the
leading edge of compiler technology.

CFT77 is a multipass, optimizing, vectorizing, and multitasking compiler that
adheres to the American National Standards Institute (ANSI) standard 3.9-1978
(often called Fortran 77). CFT77 processes existing standard Fortran pro-
grams without modification.

The CFT77 compiler is available for the CRAY X-MP series of computer
systems, the CRAY-2 computer system, and for CRAY-1 computer systems -
and it operates under both COS and UNICOS, the Cray operating systems.
CFT77 takes full advantage of the unique hardware architecture of Cray com-
puter systems and by doing so greatly enhances their performance. Thus,
users benefit from hardware and software that work together to achieve max-
imum performance.

The high degree of software portability and superior performance offered by
the CFT77 compiler result in increased productivity of the programming staff
and efficient use of computing resources.

As users of the first Cray Fortran compiler (CFT) know, application perfor-
mance and portability are the top priorities for Cray compiler developers.
These goals are paramount to CFT77, which applies the latest techniques in
software design to continue in the tradition of excellence established by Cray
Research with the CFT Fortran compiler.

CFT77 uses three techniques to
improve the execution time of a
FORTRAN program:
vectorization, scalar optimization,
and multitasking. These three
techniques are key to the
performance of Fortran
programs.

Vectorization
The compiler automatically
generates code that uses the
vector registers and functional
units of the Cray hardware.
Speedups in the area of 10 to 1
are common when comparing
vector processing to scalar

processing. The programmer
does not need to know the
details of vectorization; CFT77
automatically vectorizes Fortran
programs.

Scalar optimization
Even when CFT77 cannot
vectorize code, it still optimizes
scalar code using a variety of
optimization techniques to
improve execution time.

Multitasking
CFT77 permits the partitioning of
a program among multiple
processors, enabling different
parts to execute at the same time.
Future plans include the ability
for CFT77 to partition
automatically. Multitasking
teamed with vectorization is a
powerful combination.

Vectorization is a method for
reducing the execution time of
repetitive code. Following is an
overview of the difference
between scalar and vector
processing.

Vectorization means that
specialized hardware is used for
greatly increasing program
performance. CFT77 takes care
of vectorizing for the users;
without a vectorizing compiler, a
programmer would have to use
assembly language to
manipulate the hardware.
Vectorized loops include those
containing nested IF statements,
loops that use indirect
(gatherlscatter) addressing, and
search loops, among others.

CFT77 combines the practical
knowledge gained in Cray
Research's decade of
vectorization experience with
successful research programs
from several universities.

CFT77 also provides an extensive
set of vectorization diagnostics to
indicate vectorized and
unvectorized areas of code.
Simple code changes or
compiler directives often can help
the compiler fully vectorize the
unvectorized sections.

CFr77 efficiently optimizes scalar
code. As with vectorization,
CFr77 approaches scalar
optimization by analyzing a
complete program unit.

Scalar optimization transforms the
internal representation of the
Fortran program into a more
efficient but functionally
equivalent program. This is
achieved by simplifying
expressions and by detecting
and eliminating redundant
operations. The following
optimization techniques
recognized as being state-of-the
art by today's compiler
developers are incorporated into
CFr77:

Common subexpression
elimination
Forward propagation of
constants and expressions

u Extracting invariant
expressions from loops
Strength reductions
Hoisting and sinking
Moving stores out of loops
Store elimination
Dead code elimination
Arithmetic simplification
Short circuiting of logical
expressions
Constant expression
evaluation
Bottom loading of loops

These scalar optimizations are
always transparent to the user.

I r ~t:Ir lululastmg capawrles
CFT77 permit the programn to
divide a single program among
the multiple central processing
units offered on CRAY X-MP and
WAY-2 computer systems.

The speedup possible with
multitasking is a function of the
number of central processors
available, the degree of parallel
processing in the program, and
the overhead inherent in
multitasking. Speedup factors in
the range of 3.6 to 3.8 have been
achieved on four-processor
systems and of up to 1.8 for two
processors.

Cray Research currently supports
two approaches to multitasking.

In the first approacn, tne user
multitasks a Fortran program by
inserting calls to library routines
that implement a basic set of
multitasking functions. In the
second approach, called
microtasking, the user invokes
the PREMULT preprocessor by
inserting directives in the Fortran
source code. PREMULT then
generates the appropriate library
calls.

CFr77 supports both
approaches to multitasking, as
does CFT. When stack storage
allocation is specified, CFT77
generates reentrant code. The
TASK COMMON statement
allows the declaration of

COMMON blocks known only to
a single task; this is often useful
in the first multitasking approach.

Currently under development
and expected to be available in
the near future as a feature of
CFr77 is the ability to multitask
some Fortran code automatically.
Emphasis IS placed on multitask-
ing at the DO-loop level. Cray
Research is exploring how best
to implement multitasking
so that the use of multiple
processors is as easy as the use
of vector processors.

CFr77 is a language rich in
features. It contains all features
described in the Fortran 77 stan-
dard as well as a number of ex-
tensions to the language. Some
of these extensions, such as
stack storage allocation and
TASK COMMON, are necessary
to support multitasking. Other
features such as NAMELIST 110
and Hollerith constants are fre-
quently used in existing Fortran
programs; CR77 supports these
features so that existing codes
can be moved to CFT77 without
extensive conversions. A few
features that are expected to be
in the next Fortran standard have
been implemented in CFr77;
these include a subset of the
array syntax (see example
above) .

The same language features are Comments embedded within
supported in CR77 on all Cray a line
computer systems. The exten- Compiler directives for listing
sions supported include the output control, vectorization
followina: control, dvnamic common -

Array processing, which
permits operations on whole
arrays or array sections (a
subset of the proposed
Fortran 8X standard array
processing)
Automatic arrays, with flexible
bounds
Recursive functions and
subroutines
Pointer data type
Hollerith constants
Boolean constants (octal and
hexadecimal)
Variable names of up to 31
characters and external and
COMMON block names
containing up to 8 characters

blocks, and array bounds
checking
A choice of static or stack
storage allocation methods
TASK COMMON storage for
multitasking
On the CRAY-2, COMMON
blocks allocated to local
memory, permitting faster
access to frequently used
variables
Asynchronous 110, which
allows 110 operations to
execute simultaneously with
other program statements
Mixed formatted and
unformatted records in a file
under the COS operating
system
NAMELIST I10
Extra edit descriptors,
including those for right
justification and octal or
hexadecimal output

The Cray Fon'ran envirmmenf

The environment surrounding the
CFT77 compiler contains a
wealth of library routines and
tools that make the user's job
both easier and faster.

Library routines
Supporting the CFT77 compiler
and the high-performance
hardware inherent in a Cray
computer system is a library of
highly optimized subroutines to
aid scientific and engineering
computation.

Regardless of the machine and
operating system, a wide variety
of library routines are callable
from CFT77. They include:

Mathematical routines that are
intrinsic to Fortran
Scientific application routines
110 and utility routines

Routines in these libraries
perform random number
generation, Fourier analysis,
sorting, and many other
operations. Fortran programs that
need a frequently used operation
can be served by Cray's
standard libraries.

All of the library routines are
optimized. They have been
coded to keep execution time to
a minimum; many are coded in
assembly language to maximize
efficiency.

Linking to non-Fortran
routines
CFT77 is compatible with other
Cray Research language
processors. Routines compiled
with CFT77 may call or be called
by routines compiled by the
Pascal, C, or CFT compilers, or
routines assembled by the CAL
assembler.

Segment loader
SEGLDR, the segment loader,
allows control over memory use
at run time. This is particularly
useful for large codes with
several distinct sections, such as
initialization, computation, and
output.

Symbolic debug package
Included with CFT77 is a debug
package to help users locate
errors in their applications. The

package consists of the following
parts:

DEBUG, which analyzes a
memory dump of a job and
provides listings of variable
names and values
DRD, which is a powerful
interactive symbolic debugger
that analyzes the memory of
an executing job based on
user directives
DDA, which allows interactive
analysis of a memory dump of
a job using a subset of DRD
directives

Multitasking tools
A multitasking history trace buffer
provides for the accumulation of
a history of multitasking events.
An associated tool, MTDUMR
interprets this data and reports
the sequence of execution, task
history, and processor history.
These tools aid the user in
understanding multitasking
behavior, identifying bottlenecks,
and debugging programs.

Non-ANSI flags
At the user's request, CFT77 will
flag features that are not part of
Fortran 77.

List options
Many options are available for
generating output listings,
including a source statement
listing with any of five levels of
error messages and a listing of
assembly code generated by
CFT77. Diagnostic messages are
issued on the source listing for
loops that are not vectorized.

Cross referencing
CFr77 has an extensive cross-
reference facility. The listing
includes addresses, references
and definitions of variables,
statement labels, subroutine
names, and so on. All are keyed
to the Fortran line number.

FTREF
The FTREF program, a global
cross-reference utility, provides a
static analysis of program flow
and common block use. The
latter is provided in both
summary and detailed formats.
FTREF also has options
specifically oriented to
multitasked applications.

FLOWTRACE
The FLOWTRACE option is a
useful tool for fine-tuning program
performance. It shows where the
code spends its time and helps
locate the sections where special
optimization could be applied for
increased performance.

Hardware performance
monitor
On CRAY X-MP computer
systems, the hardware
performance monitor allows users
to identify bottlenecks and to
compute MFLOPS (millions of
floating point operations per

second). The monitor
accumulates statistics on the
following hardware activities:

Instructions executed
Floating-point operations
Hold issue conditions
Reference conflicts
Vector operations

SPY
This is a code-level profiler
available for the CRAY X-MP
computer systems. Like
FLOWTRACE, it is useful for fine-
tuning program performance.
SPY samples the hardware
program address register to build
a map of where the program
spends its time and can provide
information at a lower level of
detail than that provided by
FLOWTRAC E.

Data conversion
110 library routines convert data
and tapeldisk formats during
Fortran 110 operations. Data is
converted,to and from Cray
formats and IBM, CDC, or DEC
VAX formats. Users may also
disable data conversion during
110 operations and perform the
conversion by calls to special
library routines.

I CFT77 design philosophy

I - ..I-

CRAY-1

Transportability
Through its many features and
because of its compliance with
the 1978 ANSl standard, CFT77
assures that programs written for
other computer systems have
maximum portability with a
minimum of effort.

Additionally, CFT77 contains a
number of extensions to the ANSl
standard, including those already
supported in CFT. Some of the
extensions add helpful features
that make Fortran richer and
more flexible. Others enhance
portability by reflecting features
added to Fortran by other
computer manufacturers, such as
IBM and CDC.

Cray Research took portability
one step beyond ANSl
compliance by designing CFT77
to run on all of its machines and
under all Cray supported
operating systems. It runs on
CRAY-1, CRAY X-MR and CRAY-2
computer systems and executes
under COS and UNlCOS (the
Cray operating systems).

- I

CRAY X-MP

A Fortran program that compiles
and runs on one Cray system will
compile and run on all Cray
systems. Dtfferent codes do not
need to be maintained for each
machine. Upgrading to a new
Cray system, therefore, is easy.

Changing from CFT to CFT77 is
also easy. In general, programs
that compile and execute
correctly with the old CFT
compiler also compile and
execute correctly with CFT77.

Cray Research will implement
CFT77 on future generations of
its computers. The compiler has
been structured so this can be
done quickly, without sacrificing
the performance of generated
code. Therefore, the program
optimized today for a CRAY X-MP
or CRAY-2 computer system will
move easily to the new Cray
systems of tomorrow.

Structure of the compiler
CFT77 is designed for the future.
The compiler is structured for
easy adaptation to new Cray
hardware as it becomes available
and to new optimization
techniques as they evolve.
Because it is written in Cray's
extended Pascal, CFT77 is both
portable and maintainable.

The structure of CFT77 is
organized around three major
functions: source input and
semantic analysis; optimization
and vectorization; and code
generation.

In the first phase of the
compilation, CFT77 reads the
Fortran statements and translates
them into an intermediate form
used in later processing. This
section of CFT77 is virtually the
same on all Cray machines,
meaning source code that
compiles on one machine will
compile on the others.

The intermediate code consists of
text and a dictionary. The text is a
representation of the executable
Fortran statements. The
dictionary is a collection of the
attributes associated with the text
items.

During the second phase, CFT77
performs optimization
transformations on the
intermediate text and determines
the vectorizable sections of the
code. This phase is optional.
Bypassing it slows down the
execution speed of the generated
code, but the corresponding
speedup in compilation time can
be valuable during development
and debugging.

In its final phase, CFT77
generates machine instructions
from the intermediate text and
dictionary. The instructions are
scheduled to take advantage of
the asynchronous execution of
the independent functional units
common to all Cray computers.
Each code generator also takes
advantage of specific hardware
features, such as chaining, local
memory, or gatherlscatter
operations. Upon completion of
this third phase, the machine
language code is ready for
loading and execution.

Documentation and training
Cray Research supports all of its
software products with technical
manuals and training.
Programmers may be interested
in the following:

The CR77 Reference
Manual, which describes the
entire CFT77 language and its
interface to the Cray operating
systems
The Progammer's Library
Reference Manual, which
describes the routines
available and how they can be
called from CFT77
A course on CFT77 offered by
Cray Research at the Mendota
Heights, Minnesota, training
facility, which provides
information and practical
experience in code
conversion, debugging,
and programming to take
advantage of vector
processing and other basic
optimization techniques

Additional ihormation on CFT77
is available from any Cray
Research sales off ice.

1508 Second Avenue South
Minneapolis, MN 55402
61213336889

Domestic sales off Ices

Albuquerque, New Mexico
Atlanta, Georgia
Beltsville, Maryland
Boston, Massachusetts
Boulder, Colorado
Chicago, Illinois
Cincinnati, Ohio
Colorado Springs, Colorado
Dallas, Texas
Detroit, Michigan
Houston, Texas
Huntsville, Alabama
Laurel, Maryland
Los Angeles, California
Minneapolis, Minnesota
Pittsburgh, Pennsylvania
Pleasanton, California
Rochester, New York
Seattle, Washington
St. Louis, Missouri
Sunnyvale, California
Tampa, Florida
Tulsa, Oklahoma

Cmy We~laarchS R L
Milan, Italy

MP-1009 %86, Cmy Rasearch, Inc

