TABLE OF CONTENTS

¢ Introduction to Cray Software
- Job Control Language
Cray Text Editor - TEDI

: Cray Assembly Langugge
Program Libraries and UPDATE
Programming Exercises
Appendix A - Glossary
Appendix B - System Commands

and Acronyms

'éecﬁgﬁ'{_
 Section
7 Section3 -
,. ;éectioﬁ4
Section 5

Section 6

SWCEITOC 10/15/85

HENS3 8

E

T

-
,_-'n.-..

4~ SOFTWARE FOR CUSTOMER ENGINEERS 1

1
ES

[

e

Intended Audience: Cray Custqmqr Engineers v

Duration: -5 Diyé LI
Max. Class Size: 10 Students
rm{_ﬁéi'ééymsﬁmm Lo ._Is.a,ﬁCra}LEmployec
. Knows Cray Architecture
¢z Knows-Cray and IOP Instruction Sets

(
H
i
H
;
!

g-Gourse Description:

- , ,
e 7qeril 2 sl

ST e

!
f Has worked with Cray Offline Diagnostics (DSS)
’ .

UPDATE,; and JCL Procs are discussed.

Course Conteng:

OV 0 b

Introduction to Cray Software
Job Control Language Statements (JCL)
Crdy Text Editor (TEDI)

..Cray Assembly Language (CAL)

Program Libraries and UPDATE
Programming Exercises

i
§

Coursei’bﬁjééﬁifes: | s

i
Motivation: | {

2

FAVTY T
[o

*1+"To write simple programs usinéﬁf‘o‘%"@ﬁoﬁf’r’dl‘ianguage

l
To maniputéfe.andrprSeess COS local: dataséts

3

80To writea CAL program using TEDI ahd af interactive station

4. To write and submit a job several diffe?&ntways {
5. To frfo gram and read with|Cray Assembly Language

6. To

modify a Program Library using UPDATE |
f s

ool i T

%
!

To communicate better W1En customers, operators, and analysts

To.learn.-the.basic.skills.for.time=sharing.a Cray..i.

PRANPON=

To improve understanding of system operation

To enable more efficient response to memory and disk errors

To help isolate problems that fail online only

To allow more time for analysts to spend on software problems

To improve machine availability by reducing offline line used by C.E.

{

Has six months of Site Experience (COS site preferred)”

SWT

N

YLD

nounyt

e PR IR

A user-level course which gives students the opportunity to pragtice!; ...
the skills necessary to write programs on a Cray system. The class is
centered atound programming exercises the student will write and run., -

on a Cray. COS, Job Control Language, Cray Assembly Language,

QR e

B e i T NUPPVPE

e I Voprtoe ™Y L
lsgeynsd lownnly
¥

e Bt s s v ey e) b - 7 e

N S

coasl Ty
RES N
2283008
HTI 49U
HTHEA
T

Vosnsinsns oo,

i s

To prepare for future Cray products which will require stronger software skills

iv SWCEICD 10/15/85

N
-

SOFTWARE FOR CUSTOMER ENGINEERS 1

MONDAY

(\.«, AR

COURSE SCHEDULE

TUESDAY

WEDNESDAY

. THURSDAY

PR sanap O
PR RS WL SR FY PR

e

e R £, ept
.5~:2‘:":'-,- L)w‘.xg,ﬁ.lr.'\l

s

3 IS 0 BE

o) i~
T ERL

éY
:f'\')-u P

Introduction

JCL cont'd.

Y ngpon A

PROCs

~

ey peld

BUILD

COS Datasets Dumping and ypial et UPDATE
Loading N
Local Dat&setsr Preview Preview i | Permirial Tithe
?S%gRE Exercise 4 : ‘Exercises 5 -7
DISPOSE Class Wrap-Up
SUBMIT
Preview Terminal Time Terminal Time BeAE S BETIG S
Exercises 1 -3
N’ =
Job Control Language; CAL oo | OPENL .- ¢

COPYn
SKIPn .
SAVE
ACCESS
DELETE
FETCH
AUDIT -

Terminal Orientation

Terminal Time

. t
Josrad v *fmuuf
3

-, Source. Format,

~—17‘> ‘r

P40 7.")28.1"5

Terminal Time

1en
- Ferminalime,. ':.
| im0 P

2 rur i L:Ui aﬁ‘*" :

P S
LIV s U T

gt oman o3 - osd Sisshu

LT
(831
.{i.{" SNV (Jt“f

PR SN S
ciiidde &

nigl T

SENVIe

SWCE1CS 10/15/35

COURSE ‘MATERIALS

Software for Customer Engineers 1

COS, Job,Control Language .., . -,

TEDI Reference

AL sty Language
Macros and dpdefs
Library Reférence
Message Manual
Segment Ioader

K UPDA')I',ERc;ference

JCL Réédye Reference
CAL Ready Reférence
MVS/SPF Editor Guide

TACT

. 5 ey . 3 . . o
|9 'L*(;_.\Jr‘. RN ST X A e

BRI VTSN N T

Workbook

SR-0011
SG-0055
SR-0000
SR-0012
SR-0014
SR-0039

. SR-0066

SR-0013
SQ-0067
SQ-0023

(optional)
(optional)
(optional)

)

- SWCEICM 10/15/85

. READING, ASSIGNMENTS

Monday Night:
SR-0011 Part 1
Part 2
SR-0055
Tuesday Night:
~ SR-0000 Chapter 1
Chapter 2
Chapter 3
Chapter 4
SR-0011 Part 2
SR-0012
Wednesday Night:
SR-0011 Part3
Thursday Night:
SR-0013
SR-0011 Chapter 6
Chapter 15

pages 1-1to 1-3
pages 2-1to 2-13
pages 3-1to 3-13
pages 4-1 to 4-7

pages 1-1to0 1-16

pages 1-1t02-9

pages 2-1 to 2-20
pages 3-1to 3-9
page 4-1,

pages 4-43 to 4-43

pages 9-1to 9-13

pages 1-1,2-1,
3-1,4-1

pages 4-1 to 4-14

Chapters 1,2, and 4

pages 6-15 to 6-16

L

" Infroduction -

Datasets, | ;.
Job Steps~ - -
JCL Syntax_

+ JCL Statéments

CAL Tntro™™ ™ _
Format Conventions
Symbolic Set

* Pseudos

Loader

Macros

UPDATE
BUILD Intro

‘BUILD Statement

SWCEIRA 10/16/85

EVALUATION METHOD .
i ~

e gela -
Evaluation of your progress in gaining expertise in these skills is accomplished by a531gnmg a.
competency level to each skill. ‘ AT
S
Level . A :‘,‘...""' '-—‘- .-
0 No knowledge and no experience. |)
1 Has some knowledge and limited experience with this skill, but not sufficient
to contribute in a work environment.
2 Can perform some parts of this skill satisfactorily, but requires instruction and
supervision to perform the entire skill. e
v - 3 Can perform some parts of this skill satisfactorily, but requires periodic -
o e e -+ - - -supervision and/or assistance. P
P 4 Can perform this skill satisfactorily without assistance and/or supervision.%i‘i_ﬁm
FR 5 Can perform this skill with proficiency in speed and quality without § ji_‘
BRI supervision or assistance. e
AU 6 Can perform this skill with initiative and adaptability to special situations .~
g : without supervision or assistance. Cin ~
7 Can perform this skill and can lead others in performing it. i

Successfully completing this course should give you a competency level of three (3) for mosi

skills. Experience on the job will continue to increase your competency level. e

i . N i :: ..,' L, Reesd :

t 5 i . ;) -
T YT ; : ‘

) T { : [

A - 3 greds bt

:_:‘i' __:: ‘__3;_ - ‘_ i N H TETTITTRETR TR Teee. b

TR

viii SWCE1EM 11/85

Software for Customer Engineers 1

Date:
participant's hame:

Instructor's Name:

Region/Country:

LEARNING LOG

SWCE 1

Skills
At the end of the course the learner is able to:

Program in JCL.

Manipulate datasets.

Program using an interactive

station.

Submit a job several different
ways. - -
Construct and modify program
librarTes.

Program and read with CAL.

. % No Basis
For
-Levg]; o 0 1 2 3|4 5 6 7 Judgement

Sessions attended/held /
Exercises completed/assigned /
Labs attended/held /

This learning log is intended as an aid to the learner in establishing goals and
plotting progress. It is not intended as an indicator of job performance and
therefore should not be used in determining future job actions.

*Maximum level discernible by the instructor in an instructional environment.

iX

T PGtaeo Vi =ReE= o T

INSTRUCTOR'S: FEEDBACK
Exercises comp\eted/asswgned /
Labs attended/held /

MET THE PREREQUISITES OF THE COURSE
yes was over qualified
— —

not at all
I i

Specifics:

SELF .APPRAISAL
is correct too low
| E—

too high
|
2 levels 1 level

3 Jevels

1 level 2 levels

3 Tevels

Specifics:

WAS ACTIVE AND ATTENTIVE IN CLASS®
to a normal degree exceptionally so

not at all

Specificﬁ:

MADE GOOD USE OF TERMINAL TIME
tg a normal degree exceptionally so

not at all

Specifics:

KEPT UP WITH THE REST OF THE CLASS
yes was ahead of the class-— =
—

fell behind the class
.
e - e)":‘t',' .

P______,

Specifics:

e et o RS T

" sHows A POSITIVE ATTITUDE ABOUT WORKING AT CRAY
to a normal degree

not at all
1
]

exceptionally so

~

i
—
Specifics:

Comments:

These are subjective a
ppraisals based on t
observations of the learners behavior durngg %EZ;E#SEgrS briet and T1m1ted

X

g
£

Software for Customer Engineers I

Date:
Participant's hame:

Instructor's Name:

Region/Country:

LEARNING LOG

SWCE 1

Skills
At the end of the course the learner: is able to:

Program in JCL.

Manipulate datasets.

Program using an interactive

station.

Submit a job several different
ways.

Construct and modify program
libraries.

Program and read with CAL.

% No Basis
For
Levels 0o |1 2] 314 15 61 7\ jydgement

Sessions attended/held _ /
Exercises completed/assigned /
Labs attended/held /

This learning log is intended as an aid to the learner in establishing goals and
plotting progress. It is not intended as an indicator of job performance and -
therefore should not be used in determining future job actions.

*Maximum level discernible by the instructor in an instructional environment.

Xi

- At rvramr s e r o e tomem A nasarin

e

Introduction to Cray Software

e

MODULE OBIJECTIVES

Upon completion of this introduction module, and with the aid of all furnished reference material,
the learner should be able to:

1.

2
3
4,
5

o

Diagram a Cray computer system

. Describe the function of each hardware component

. Explain what the software components are

Describe the fllIlCthIl of the software components

. Describe the difference between machine code, assembly language, and high-level

programming

Label a Cray memory map, including user areas

Identify the job default datasets

Analyze COS blocked datasets for BCW, EOR, EQF, and EOD control words

11 SWCEIMO1 10/85

[RRETHEI LA S ALIL ISt &

e

e gmagae

PR

MENDOTA HEIGHTS COMPUTER CENTER CONFIGURATION

2 CRAY COMPUTERS:

1 CRAY X-MP/438

4 central processors (CPUs)

8 Million words of central memory
128 million words of SSD

7 front-end computers maximum

1 CRAY X-MP/22
) central processors (CPUs)
2 million words of central memory -
8 million words of SSD
3 front-end computers maximum

FRONT-END COMPUTERS

Digital Equipment VAX 11/780
Digital Equipment 11/44 (planned)
Amdahl

IBM 4381

CDC CYBER
Data General M600

NSC HYPERChannel to all computers but the Data General M600

The terminals used in the Mendota Heights Training Center communicate with the CRAY's
through either the TBM 4381 or the Amdahl. (See the configuration layout on the following

page.)

1.2 'SWCEICEG 10/85

()

XOf 3DYAHILN| = C-AVID
- S3NIT ILOWAH 05211
XVA 030
0SLit}
XVA 030
f S HIAAD
7 300
Z/dW-X HLIM
Q3aUVHS ﬁ.
18Cy Wl]
\
THYAWY HLIM
QIYVHS
h.
| sziEwWal
SINETILOWI
~
6va0
6200 ™

3Sd1103

0a

} THYOWY
19CY HLIM
QIUVHS .

ons ti
———eyy XVA 03d
SANIT3LOW3AY
Q09N
orsne—~L 2
S3INITILOWIY L

¢

¢/dN-X

uorjean3ijuoy) 19yu87) Ja)nduIo)) SADIAIIG royndwon

)

(e8]
v dW-X HEIM —
QABYHE

)

g

6vac

5¢0C

3841103
od

| . SOETWARE PRODUCTS
OPERATING SYSTEMS

COS - Cray Operating System
Multiprogramming, multiprocessing, multitasking

CXOS - Cray Operating:System for compatibility between Cray X-MP and Cray-2

I0S - Input/Output Stubsystem

Peripheral Devices
PRODUCT SET
Languages :)
CFT - FORTRAN Compiler, Vectorizing and Optimizing
CAL - Cray Assembly Language
APML - A-Processor Macro Language
PASCAL - Structured Algorithm Compiler
Libraries
Program Libraries - Source Code
Product Set, System Generation, and Diagnostics
Binary Libraries - Common Routines
$SYSLIB (System subroutines)
$SCILIB (Scientific math subroutines)
$FTLIB (FORTRAN subroutines)
$ARLIB (Arithmetic subroutines)
$IOLIB (System I/O subroutines)
$UTLIB (Code conversion subroutines)
Utilities and Aids

Job Control Language
- Permanent Dataset Security and Utilities
- Local Dataset Utilities
- Staging Datasets

Debugging Aids

Library Utilities

Operational Aids and Utilities

FRONT-END STATION SOFTWARE

Programs that run on front-end code
IBM-MVS, VM .
- Control Data - NOS, NOS/BE
DEC-VMS
Data General - RDOS, AOS

- APPLICATIONS
NASTRAN - Structural analysis

EISPACK - Eigenwave matrices
LINPACK - Simultaneous linear equations

SCILIB - Linear algebra, FFT, and filtering
CSPICE - Electronic circuit simulation
BYU.MOVIE - General-purpose graphics
BETAII - Geophysical simulation
AMOSLIB - Atmosphere simulation

MORSE - Nuclear simulation

14 SWCEISP 10/16/35

»

CRAY RESEARCH SOFTWARE

STATION
Resmes on the Front End

[OPERATING SYSTEM|

Res1des in Centra] Memorg Loca] Memorg and Buffer Memorg

.........................

PRDDUCT SET

Resxdes on Crag Disk Drives

1.5

LANGUAGES

THE CRAY SOFTWARE PRODUCT SET

Set of characters, symbols, words, etc. used to communicate with a computer.

CAL
CFT
PASCAL
C

LIBRARIES

Set of general-purpose software to perform common routines. These are subroutines that

Cray Assembly Language

Cray version of Formula Translation (FORTRAN) Compiler
Structured Algorithm Compiler
Base language for CXOS

already exist and are available for use by a programmer.

$SYSLIB

$SCILIB

$FTLIB
$ARLIB
$IOLIB

$UTLIB

System subroutines (e.g. access or delete a permanent dataset)
Math routines used for scientific purposes (e.g. matrix multiply)
FORTRAN subroutines (e.g. square root)

Arithmetic routines (e.g. sine function)

Dataset movement (e.g. copy datasets)

Conversions (e.g. binary to decimal ASCIT)

UTILITIES and AIDS (examples)

UPDATE

BUILD

ICL

Create source libraries
Modify existing libraries, operating systems, or current jobs
Line-oriented source maintenance (text editor)

Create binary libraries
Modify/maintain libraries
Works with object code

Job Control Language for submitting jobs to the Cray

1.6 . SWCEIPS 10/16/85

()

AUDIT
POM

SAPTEXT
$DBHELP
$I0LIB

$SCILIB
§SYSLIB
$UTLIB

ACCOUNT
ADSTAPE

ARLIBPL

AUDPL
BIND
CAL

CFT
CHARGES
COPYD
COPYR
COSPL
CSIM
DEBUG
DUMP
FOUMP
FTREF
IOLIBPL
ITEMIZE
LDR
MODSEQ
PASCAL
PDSDUMP
PRVDEF
SEGLDR
SETOMN
SKIPD
SKIPR

"~ SKOL
SKOLREF
SPARN
STEP
SYSREF
TEDIPL
- UNB
UPDPL
UTLIBPL

84 DATASETS,

CoS 1.14

1D

V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
Y1148F1
V114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V114BF1

ED

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

17164 BLOCKS,

“1.7

PDN

$ARLIB

. $FTLIB

$PSCLIB

- $SID
SSYSTXT

SUTLTXT
ACCTDEF
APHL
AUDIT
AUTODIR
BUILD
CALPL
CFTPL
COMPARE
COPYF
coPYU
COSTXT
CSIMPL
DSDUMP
EXTRACT
FLODUMP
GENPL
IOPPL
JCSDEF
LDRPL
MODSET
PASCLPL
PDSLOAD
SCILBPL
SEGRLS
SIDPL

. SKIPF

SKIPU
SKOLPL
SKOLTXT

.. STATS
- SYSLBPL

TEDI
TooLPL
UPDATE
UTILPL
HRITEDS

1D

V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
y114BF1
V114BF1
Y114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
Y1148F1
V114BF1
Y114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
V1148F1

8787968 WORDS

ED

)——A;__A'_AH}_:H.__;)_A)_AHHHHHHHHHHHHHHHHHHHHH)—_A}_l,__x’__t;._l)_.A}._A;__‘;..n,__A,_A,_A

WHAT IS A JOB?

1. Work for Cray to do

A text dataset

Originated with a text editor
Submitted interactively or batch

Exists in memory at execution time

Y ST~

. Consists of:

. Job Table Area (JTA), which contains -
Job-related information
User log
User JCL
Exchange package, B, T, and V registers
Local dataset name tables
Dataset allocation tables

The Job Table Area cannot be manipulated by the user, but its contents can be

dumped.
User Area, which contains -

Job Comunication Block
Program/data
Control Statement Processor
Product set
User-written text/code
Logical file tables
Dataset parameter area
I/O buffers

7. Created and maintained by COS task job scheduler

1.8

SWCE1JOB 10/16/85

()

CENTRAL MEMORY

~— .

BA
EXEC TABLES
EXEC
BA
STP TABLES
"""""""""""""""""""" JOB TABLE AREA
%P, B, T,V Registers
Dataset Name Tables
ST p Dataset Allocation Tables
BA
JOB COMMUNICATICN BLOCK
Control Statement Processor (optional) PROGRAM AREA -
USER & CSP & JCL
USER AREA 1 LOGICAL FILE TABLE
User Area 2 DATASET PARAMETER TABLES
|0 BUFFERS
COS SYSTEM BUFFERS —
SEGMENT, DISK, LOG
IeMEM

,V/-

1.9

JOB SUBMISSION

Front-end computer provides input to Cray and receives the Cray output.

Controlled from a station:
IOP station
Local operator console
Batch entry station
Interactive station
Concentrator for several stations
Remote batch entry station

First file of transfer must be Job Control Language
Cray Operating System (COS) handles transmission
Job Control Language file

Specifies needed system resources

Defines job processing steps

Maintains database

JOB DEFAULT DATASETS

$CS
$CS is a copy of the job's control statement file from the input dataset and is used only by the
system; the user cannot access $CS by name. Cray reads this dataset to get the job control
statements.
SIN |
This is the job input dataset. The job itself can access the input dataset, with read-only permission,
by its local name, $IN, or as FORTRAN unit 5.
$OUT
This is the job output dataset. The job can access this dataset by name, $OUT, or as FORTRAN
unit 6.
$LOG
The job's logfile contains a history of the job. This dataset.is know only to COS and is not

accessible to the user. (User messages can be added to the logfile, however, using the MESSAGE
system action request macro or other user remark subroutines.)

.10 - ' SWCE1JS 10/16/85

SUBMITTING A JOB FROM A FRONT-END

N
D‘iik) Disk Disk
IBM Mainframe
MVS TSO/SPF
~ JOB
(i)
FILE SENT TO CRAY ’ FILE RETURNED TO USER
co OU
$CS
/EOF FILE 1
$IN
FILE 2
FILE 1
EOF e]
FILE2 $ LOG

LOCAL DATASETS

Local datasets are known only to one job. They cannot be used by another job.
Local datasets contain information in various forms:

Text in ASCIT

Source program in ASCIT.

Text, data, and source program in ASCII format
Binary load module - object program
Executable binary program

Binary data

Source program library

Procedure library

Object program library

Job local datasets have required characteristics. They are:

Identified by a dataset name table (DNT) in the Job Table Area (JTA)

Named using 1 - 7 alphanumeric characters; the first character must be
A-7Z,8, @,0or%

Available only to the job that created it

Deleted from the system at job end unless saved

Allocated in the users's I/O buffers

Four default datasets are local to a job:

$IN - used for source programs, statement directives, or data

$OUT - used for JCL outputs, assembler listings, and loader map

$CS - Job statement file; must begin with the JOB and ACCOUNT statements
$LOG - File containing records of each job step and system actions

1.12 SWCEILD 10/17/85

()

LOCAL DATASETS

This example is $IN

FILE 1
10 words/record
64 bit Word l
l |
L]
l |
80 Characters r]
/EOF -
Record r |
T EOR | |
FILE 2
l I
L |
ABCDEFGH |
/EQOF
0405022064210521443510
FILE 3 8 ASCII Characters
EOF
EOD

1.13 , FWTELLQDA 1188

DATASET FORMATS

Blocked Format

Blocked format is used by default for external types of datasets, such as user input and output
datasets. Record positioning requires a blocked format. The blocked format adds control words to
the data to allow for processing of variable-length records and to allow for delimiting of levels of
data within a dataset. :

The data in a blocked dataset can be in the form of ASCII code and/or binary. Blanks are normally
compressed in block coded datasets. Each block consists of 512 words.

Refer to SR-0011, Part 1, 2-6 for format.

Interactive Format

Interactive format closely resembles blocked format; however, each buffer begins with a block O
Block Control Word (BCW).

Each record transmitted in an interactive mode to or from COS must contain a single record
consisting of a Block Control Word, data, and an end-of-record Record Control Word.

Two formats for interactive output can be assigned when the dataset is created: character blocked
and transparent. Character blocked mode is the default. In this mode, an end-of-record RCW is
interpreted as a line feed or carriage return. In transparent mode, the end-of-record RCW is
ignored and the user must provide carriage confrol characters.

Unblocked Format

Dataset I/O can also be performed using unblocked datasets. The data stream for unblocked
datasets does not contain RCWs or BCWs.

The stream does not allocate buffers in the job's /O buffer area for unblocked datasets; the user
must specify an area for data transfer.

When a read or write is performed on an unblocked dataset, the data goes directly to or from the

user data area without passing through an I/O buffer. The word count of data to be transferred
must be in multiples of 512.

1.14 SWCEIDF 10/17/85

()

BLOCKED DATASET FORMAT

7 e BT

< 0700777

............... 1
222224
ECORD/OI\{E/F/(E/T/W/O///////
' JAII 144 L L L
10 | 74 &2 e 0 0
- 10 [0 2 i //3 ////// o
Y5557
10 | 42 P 0 | 0 |

2

0

//////°///////////°////
RECORD N TE S 7 /é

- |
0
RECORD ONE FILE FOUR 1//%//

[

1.15

TAPE DATASETS

Tape datasets can be read or written using two different formats:
Interchange

Transparent

Interchange Format

Interchange format enables reading and writing tapes that are also to be read and written on other
vendors' systems.

In interchange format, each tape block of data corresponds to a single logical record in COS
blocked format (that is, the data between record control words).

In interchange format, tape block lengths can vary up to an installation-defined maximum not
exceeding 1,048,576 bytes (131,072 64-bit words). It is recommended that the maximum block
size not exceed 100 to 200 Kilobytes. Blocks exceeding these sizes may require special operational
procedures (such as the use of specially prepared tape volumes having an extended length of tape
following the end-of-tape (EOT) reflective marker) and yield little increase in transfer rates or
storage capacity.

When a dataset is read in interchange mode, physical tape blocks are represented in the user's I/O
buffer with block control words (BCWs) and record control words (RCWs) added by COS. The
data in each tape block is terminated by an RCW. The unused bit count field in the RCW indicates
the amount of data in the last word of the tape block that is not valid data. A BCW is inserted
before every 511 words of data, including the RCWs. The format of RCWs and BCWs are
described previously in this lesson.

Transparent Format

In transparent format (disk image), each tape block is a fixed multiple of 4096 bytes (512 words),
generally based on the dataset density (i.e. 16,384 bytes at 1600 bpi and 32,768 bytes at 6250 bpi).
The data in the tape block is transferred unaltered between the tape and the I/O buffer in the user
field; no control words are added on reading or discarded on writing.

- In transparent mode, the data can be in COS blocked format or COS unblocked format.
Transparent format tapes are not generally read or written by other vendors' equipment.

1.16 SWCEITF 10/17/85

()

TAPE FORMATS

BCY |
HATSEST B paithw 5
EOR TTTTTTmmTTTTAITTTTTT
e T — ST R IT TR IR
EOR A
Ly vREugey il
e SRS
10 BUFFER TAPE BLOCK
|0 BUFFER TAPE BLOCK

1.17

INTERCHANGE

{ COS Blocked Record

= 1 Tape Block

TRANSPARENT

Fixed Length Tape Blocks

6250 BP!

32768 bytes

1600 BPI

16384 bytes

ASSEMBLY LANGUAGE

Characteristics:

Machine dependent
Allows programs to be written in mnemonics or symbols

Performs a 1 to 1 interpretation - for every assembly language instruction a machine code
instruction is generated

Can assign names to variables

Speeds writing of the program and does not force the programmer to keep track of all
memory locations

Works in conjuction with a program called an assembler
The assembler:

Interprets assembly language instructions and converts them to machine code
Resides in main memory in machine code (binary) for use by a source program

Advantages to assembly language over machine language:
Alphanumeric operation codes are easier to remember than numeric codes

Storage locations for instructions or data can be given names rather than having to
remember numeric addresses

Programs can be written in a more straightforward write-it-out manner

Modifications to a program are faster since remanipulation of addresses is not needed

1.18 SWCE1AL 10/17/85

CAL ASSEMBLER

$IN $OUT

SOURCE CODE . TEXT DEFINITIONS

CAL

b

BINARY "LISTING CROSS
LOAD ' REFERENCE
MODULE

$BLD $OUT $OUT

1.19 SWCETCAL 10/85

HIGH - LEVEL LANGUAGES

Characteristics:
Machine independent
Depend on standard readable language
Allow a programmer to express many instructions w1th a given line of code
Example: AddBtoC .
Store A
Allow complex algorithms performed without repetitive coding
Work in conjuction with a compiler or interpreter
- A compiler is language dependent and produces binaries dependent upon the
machine
Common high-level langunages:
BASIC - Beginner's All-Purpose Symbolic Instruction Code
FORTRAN - Formula Translation
COBOL - Common Business Oriented Language

PASCAL - Structured Algol Programming
ALGOL - Algorithmic Language

Advantages of High-Level Languages:
Programs will transfer from machine to machine
Allows programmers to write many instructions with one line of code

Make it easier for programmer to use other computers

1.20 SWCE1HHL 10/85

()

CFT COMPILER

$IN
SOURCE CODE

CFT

BINARY LISTING CROSS
LOAD . REFERENCE
MODULE

$BLD $OUT $OUT

1.21 ‘ SIGCE1CET 10/85

Functions:
Creates executable binaries
Plugs in binary modules from libraries
Saves time-on commonly used routines
Is the second pass of the assembler
Links external symbols from module to module
Links relative addresses together

Provides a loader map which gives addresses where each module is loaded

Both CAL and CFT use the loader

SEGLDR is the new product to replace LDR (Release 1.15)

1.22

SWCE1L 10/85

()

LOADER

BINARY
LOAD
MODULE

$BLD

$SYSLIB \ / $ARLIB

~ $IOLIB]LI R $SCILIB

$UTLIB $FTLIB
ABSOLUTE SYMBOL LOADER
BINARY TABLE MAP
$ABD $ABD $OUT

1.23 SIDCE1LDR 10/85

()

INTRODUCTION QUIZ

1. Name five programs delivered with a Cray and what each does.

2. What is an operating system's purpose? (three things)

3. What is a local dataset?

4. What are the limitations on naming a local dataset?

5. What is a job?

6. What is the difference between a compiler and an assembler?
7. What is the difference between batch jobs and interactive jobs?
8. What'is a station and its function?

9. Whatis the wor.d size of a COS blocked datasét and why?

~ 10. What four local datasets does every job have and what are each used for?

1.25 SWCEI1Q1

10/85

()

()

- Job Control Language

2

)

()

()

MODULE OBJECTIVES

Upon completion of this introduction module, and with the aid of all furnished reference material,
the learner should be able to:

1. Submit a job to COS

Copy a dataset or'part of one
Manipulafe the dataset pointers

Create a permanent dataset

Read a permanent dataset

Delete or modify a permanent dataset
Search the dataset catalog for a dataset

Stage a dataset to and from a front-end

A S <A G R

Recognize a control block of JCL

—
e

Recognize a JCL procedure

2.1 ' SWCEIMO2 11/85

JOB CONTROL LANGUAGE

The first file in $IN contains JCL for that job. Each statement is a record.

Job Definition

-Control statements used in defining a job, its operating characteristics and job
processing resource requirements.

Dataset Utilities

Utilities allowing the user a convenient means of copying, positioning, or
initializing a local dataset.

Permanent Dataset Utilities

Utilities to archive, backup , or report status on permanent datasets.

Analytical Aids

Utilities to analyze the user area and help debug a job.

Dataset Staging
Control statements to process the transfer of jobs or datasets from and to a
front-end computer.

Control Statement Blocks

Allows JCL to be executed with conditional branches, looping and JCL
subroutines called Procedure Libraries.

)

2.2 SWCELICL 11/85

g —= =
= Nvas

L SOURCE FILE

ih —

——— =

] CONTROL STATEMENTS
‘ JOB,JN=...

JCL CONTROL STATEMENT
FILE

2.3

JOB DEFINITION AND CONTROL

JOB Control Statement
Defines the job to the operating system. MUST be the first statement in a job and cannot
be continued to subsequent lines.

JOB,JN=jn,MFL=f],T=tl,P=p,US=us, OLM=Im,CL=jcn,*gn=nr.

The only required parameter is the job name of 1-7 characters.

Remaining parameters supply the system information about memory, time limit, priority, etc. for
this job.

Examples: | Comments:
JOB,IN=JCLTST. | All parameters defaulted.
JOB,IN=JCLTST,T=8. Time limit of 8 seconds.
JOB,IN=JCLTST,P=T7. Priority of 7.
© JOB,JIN=JCLTST,US=TNG. User number of TNG.
JOB,IN=JCLTST,SSD=500. Asking for 500 blocks of SSD storage.
ACCOUNT Statement

Validates the user's account number and optional password. The statement must
immediately follow the JOB statement if accounting is mandatory.

ACCOUNT,AC=ac,PW=pw NPW=npw,US=us,UPW=upw, NUPW=nupw,
APW=apw , NAPW=napw.

The only required parameter is the account number of 1-15 alphanumeric characters. If COS
security is enabled the UPW parameter is also required.

2.4 SWCELID&C 11/85

0 - ON3 LNOY4 Ol a3an3and sY01o3s
0 - QN3 LNOYd WOY4 QIA1303Y SYHO0LO3S
0 = 03AVS SYOLOIS L3SVLIVQ LNINVWYIY
clL ~ (03SS300V SYOLOIS LIASVIVA LNINVWHIJ
Sl = d3sn SYOLOIS LIASVIVA AYVHOJIWIL
0 - SL3ISVIVYA LN3A(SIY AYOWIANW

o¢ - STIVD 380719

0¢ - §77v0 N3ado

oLl -~ $1S3Nb3Y o/1 ¥isn

684G - U3AOW SY¥0LD3S dsSIa

hgqe ~ {SQYOM) VLI WNWIXYW

2L0¢ -~ (SQYOM) VLIIr WNWINIW

©0648 - (SQYOM) 14 WNWIXVW

91642 : - (SQYOM) 14 WNWINIW

91488 - (SQYOM) 3ZIS 90r WAWIXYW

09182 - (SAYoM) 3718 90" WNWINIW

800690 - (OASxSAMW) IWIL LIVM O/1 3 AHOWIW

oLLLE 2LL ~ (03S%SAMW) WL NdO % AHOWIW

0691 " 62:20:0000 - 403N LNdNI NT ONILIVM JWIL

HEEH 2L 10010000 - 0/1 Y04 ONILIVM FWIL

L812°L0:00:0000 - ALND3IXI OL ONILIVM IWIL

2919°00:00:0000 - NdO NI ONILNO3IXT IWIL

1490 - YAGWNN ¥3Isn

v2ostn - AWYN gor
a0r 40 aNn3
21009000 *HILNID ‘dSA00E=M1°002=M1 ‘YL ‘dWna
8£006000 ‘gordWna
NOI1LNO3aXA N1939 - 00047
2h00h000 *dVI ‘YA
8hE9 :sUIALANG O/ + S028.L !SQUOM AYOWIW [IvD] - €00VD
SAN0D3S ndo Hh0G ' 0 AW L ATawassy [vo] - 200vD
dWX AVYD - (H8/2L/€0) €L°X NOISYIA Tvd [1vo]l - Lo0ovD
GLO0E000 VO
21002000 "=Mdn ‘=Sn =0V ‘ LNNODOV
8E£00L000 ‘veogLn=Nr‘gor

#8/t1L/€0 3LVA ATEWISSY £L'X S0 WILSAS ONILVYIdO AVYHO

h8/6L/€0 "NNIW “SLHOIAH V.LOANIW - 14D 9/1L0L=-TVIY3S dW-X AVHD
‘owsp e 03 anp ‘L2 yodeW ‘AepsaupeM U0 GLLL - GH60 4O .
' sJnoy ayl usaMilaq JdW-X 8yl uo HOLvd ou aq || IM aJoyl - H8/€L/E0

‘HL/€0 ‘0€2L ' UnJ
seM sAep g U] possS9O0E 10U S38SBIBP 4O BA|UOJE UY -

*syoedld £€Q¢ Ajsno|Aadd sem
31 °sYOBJI Q9E€ MOU S| JW-X 89Ul U0 0Z2-0~YWg=NAQ se -
J4@sn 8yl 03 a(qe|leAR AHOWIW ¥I4d4ng 40 unowe 8yl - w8/hL/E€0
##3 SMBU AVYD |edausab 404 JUBWSLERIS {0J42U0D SM3aN 9yl aSl wxw

U N

¥asn
¥3asn
H3asn
¥yasn
yasn
y3sn
¥asn
43sn
43sn
¥3sn
¥3sn
y3asn
¥3sn
43sn
¥3asn
43sn
H3asn
43sn

- dasn

H3sn
43asn
43sn
43asn
43sn
dSO
480
dS0
dsS9O
dX3
H3asn
dSO
y3asn
H3asn
¥3asn
dSO
ds9
4S80
4S80
dsO
dS0
dSO
ds0
ds)
ds9d
dso
dSO
dso
dSO
dso
dS0
dS0
dSO
ds3
dso
dSO
dsd
dso

$91L9°0
691910
$919°0
69190
$919°0
©191L9°0
791L9°0
7191970
7191970
©1919°0
79L9°0
H919°0
%9L9°0
71919°0
791970
71919°0
919" 0
£919°0
£919°0
£919°0
£91L9°0
£919°0
29190
2919°0
091L9°0
0919°0
-0919°0
0€15°0
62lG°0
h2.G'0
9,060
LL0G ' 0
0,060
1200°0
62000
80000
L0000
L0000
L000°0
L000°0
1000°0
L0000
L0000
1000°0
1000°0
1000°0
£000°0
L0000
L0000
0000 °0
00000
00000
00000
00000
00000
00000
00000

20 hG 9L
200G 9L
20:hG:91
206 9L
207G 9l
c0:ha
FA R]
201G
20 ha
20:h4
20:hs
20ihg
20hg
20he
661 €4
haigq
€616
8higq
9N iEG
ofrigg:
Ghi€GioL
ahigGi9t
ehiggigl
Shig6i9lL
ehitEGi91
Shieqi9L
Shi€GigL
ehieg:9l
Shiieq gL
chiieqi9lL
chi€qiglL
ehieq:i9L
chigg:9lL
ehi€6:91
chi€6:94
chigg:ial
2higqaiolL
chieqi9l
ehii€6:91
Shi€6:91
Shiesiot
_N:umm"@—

‘€691
“Mummuwr

.
.
.
.
.
.
.
.
.
.
.
.
’
H
’
.
.
’
I3
H
o
.
.
N
»
H
.
3
.
.
’
H

WVWOOOOOOVOOVOOVLWOWOVWY
T T T T

2.5

DATASET UTILITIES

COPYR, COPYF, COPYD Statements

Copies a specified number of records, files, or a dataset to another dataset beginning at the
current dataset pointer position.

' COPYR,I=idn,O=0dn,NR=n.

Following the copy, the dataset pointer is positioned AFTER the EOR of the copied
record.

COPYF,I=idn,O=0dn,NF=n.
Following the copy, the dataset pointer is positioned AFTER the EOF of the copied field.

COPYD,I=idn,O=o0dn.

Following the copy, the dataset pointer is poéitioned AFTER the EOF of the last copied
file. EOD is NOT written.

The copy utilities are for use with CRAY blocked datasets.

Examples Comments:
COPYD,I=$IN,0=SWCEIL. Copies $IN to SWCEL.
COPYF,I=SWCE1,NF=2. Copies 2 files in SWCE1 from the

current pointer.
COPYR,NR=1. Copies 1 record in $IN (default)

from the current pointer.

2.6 SWCEIDU 11/85

o

B sherasy

HLANRE
VI AIAE

ypaRegie

g ndma el

COPYFF

Fi

(& rininsong (2
B oo e

£ of ey oy stea o 2hv

ACLATE 2T

NSREIRE IRuIRE

_

7/

w

% :
27

Datase t Pointer R

eeeeee

AL, e

| COPYD

After

2.7

COPYR

SKIPR, SKIPF, SKIPD Statements
Skips a specified number of records or files. It can also position a dataset pointer after the
last file of the dataset.
SKIPR,DN=dn,NR=n.
SKIPF,DN=dn,NF=n.

SKIPD,DN=dn.

The skip utilities are for use with CRAY blocked datasets.

REWIND Statement

Positions the named dataset(s) pointer(s) prior to the first block control word (BCW) and
in some intances flushes the buffers to disk.

REWIND,DN=dn;:dny:...dng.

Examples: Comments:
SKIPF.DN=SWCE2,NF=1. Skips 1 file on SWCE1 from current
pointer.
!
SKIPR,NR. - Positions the pointer after the last record
of the current file in $IN.
REWIND,DN=SWCE2. Rewinds SWCE2 to the beginning o

its first record.

2.8 : SWCEIDU 11/85

()

10 0
16

74

10 | 42

/////////// S

RECORD p/f\lE/f/FLgEi@E/////
REC é{ T/{O//////////
;_,;,.‘;

////////

/////////////// ////
RECORD FOUR FILE FOUR

RECORD FOUR/////////
yooys //
AT oo
RECORD ONE FlLETW(/// o
20 /// W2 S

:sms#iﬁ 30 2z
bewd

—

gt fett enfl

rpepsl T pirRn)

WBe b arRas
grrrolt csn|

RECORD FOUR FILE FOUR

////////// ///

E@% rpad g el

P

2.9

SKIPR

SKIPF

SKIPD

PERMANENT DATASET MANAGEMENT

Provides for creating, accessing, and protecting disk permanent datasets.

Permanent datasets cannot be destroyed by normal system activity or engineering maintenance.
Permanent datasets cannot be affected by front-end systems.

Permanent magnetic tape dataset inf;)nnation can T;e maintained on a front-end system.

Permanent disk dataset information is maintained on disk in a dataset catalog (DSC).

PERMANENT DATASET ATTRIBUTES

Public Access Mode (PAM)

Defines what type of minimum access all users can have to a particular dataset.

Permission Control Words
Read, write, and maintenance passwords that, if used, must be supplied to gain access to
a particular dataset in the mode desired.

Permits
A list of alternate users of a particular dataset and which PAM each alternate user is
allowed.

Public Access Tracking

Records of every user who accesses a public access dataset can be maintained.

Text
A character string passes to a front-end system during transfers of datasets between
systems. Normally contains instructions to the front-end.

‘Notes

A character string of up to 480 characters. There is no restriction asto the contents of the
note. ‘

2.10 SWCEIPDM 11/85

Permanent Dataset

ACCESS

/l\ '

OWNER

OWNER OWNER
PAM= '
PDN| |PDN| |PDN| g. 1D 1D 1D
W=
M:
1D 1D PDN| |PDN
ED EL
ED ED

2.11

PERMANENT DATASET MANAGEMENT

SAVE Statement

Creates an initial or additional disk dataset catalog (DSC) entry for a local dataset
making a new edition of a permanent dataset.

SAVE, DN=dn,PDN=pdn,ID=id, ED=ed,R T=rt,R=rd, W=wt,M=mn,UQ,
NA,EXO=0ON/OFF,PAM=mode,ADN=adn(m),TA=opt,
TEXT=text, NOTES=notes.

The only required parameter is the dataset name of 1-7 alphanumeric characters, but
it is recommended that you use an ID.

Examples:

SAVE,DN=SWCE1,ID=TNGO00,PAM=R.
(Makes local dataset SWCE1 a permanent dataset with the same name and
gives it an ID of TNGOO and a public access mode of READ.)

SAVE,DN=A,PDN=SWCE3,ID=TNG00,M=TNG.
(Makes local dataset A a permanent dataset with the name of SWCE3 and
gives it an ID of TNGOO and a maintenance control word of TNG.)

SAVE,DN =C,PDN=ABSOLUTELY,ID=TNGO00,R=ME.
(Makes local dataset C a permanent dataset with the name of
ABSOLUTELY and gives it an ID of TNGOO and a read control word of
ME.)

SAVE,DN=MINE,PAM=R,ID=TNGO00,M=NO.
(Makes local dataset MINE a permanent dataset with the same name and
gives it a public access mode of READ, an ID of TNGO0, and a

maintenance control word of NO.)

2.12 SWCEISAVE 11/85

()

SAVE

SAVE,DN=MINE,PDN=FILE,ID=TNG01,R=TNG,PAM=R.

FILE @ f===-==-=--~-

USER HRER

= 1/0 BUFFER

nscC

L I Sy S

DAT @ dmm e e e e oo

SN—

MASTER DEUICE

FRONT-END

2.13 SWCETSAD 11/85 °

ACCESS Statement

Allows the user to make an existing permanent dataset local to a job by assunng the user is
authorized to use the dataset and copying DSC information to a user JTA area.

ACCESS,DN=dn,PDN=pdn,ID=uid,ED=ed,R=rd, W=wt,M=mn,
UQ,LE,NA,O0WN=o0v,CS=cs,DF=df,DT=dt,
FSEC/VSEQ=fsec,LB=1b,MBS=mbs,NEW ,MF=FES,
RS=rs,DEN=den, XDT=yyddd ,RT=rt,CT=ct,RF=rf,
VOL=voly:voly:..VOL,.

The only required parameter is the dataset name of 1-7 alphanumeric characters.

Examples:

ACCESS,DN=SWCE1,ID=TNGSWCE.
(Makes the permanent dataset SWCE1 with an ID of TNGSWCE
local to a job and gives it a local dataset name of SWCEL.)

ACCESS,DN=A ,PDN=CRAY1SYSTEMDUMP ,R=READDUMP,ED=268.
(Makes the Cray Systemdump dataset local to a job and calls
it A. The PDN has a READ control word of READDUMP
and an EDITION number of 268.

ACCESS,DN=A,PDN=CRAY1SYSTEMDUMP,M=MAINDUMP,UQ,
ED=103.
(Makes the Cray Systemdump dataset local to a job and calls
it A. The PDN has a MAINTENANCE control word of
MAINDUMP and an EDITION number of 103.

RELEASE Statement
Relinquishes access to a permanent dataset or removes a local dataset

from the job area.

RELEASE,DN=dn :dny:dng, HOLD.

Examples:
RELEASE,DN=A.
(Removes local dataset A from the job area.)
RELEASE,DN=$BLD.
(Removes local dataset $BLD from the job area.)

2.14 SWCELACC 11/85

@,

-

FILE

pDscC

N—

MHASTER DEDICE

DAT - -<--

ACCESS

ACCESS,DN=MINE,PDN=FILE,R=PASS,UQ.

[e e e R

FRONT-END -

- 2.13

DNT
- — ORT

USER AREA

1/0 BUFFER

SWCEIRCC

11/85

o= = -

——— e

MODIFY Statement

Alters permanent dataset information established in the DSC when the dataset has been
accessed with unique permission (UQ).

MODIFY,DN=dn,PDN=pdn,ID=uid, ED=ed, R T=rt,R=rd, W=wt,
M=mn,NA ,EXO=0ON/OFF,PAM=mode, ADN=adn(m),
+ TA=opt, TEXT=text, NOTES=notes.

The only required parameter is the dataset name of 1-7 characters.
Examples:

MODIFY,DN=A,PAM=R.
(Alters permanent dataset A to give it a PUBLIC ACCESS MODE of
READ.)

MODIFY,DN=SWCE1,ID=TNG.
(Alters permanent dataset SWCEL to give it an ID of TNG.)

MODIFY ,DN=GENPL,RT=40,ED=1.
(Alters permanent dataset GENPL to give it a RETENTION period of
40 days and an EDITION number of 1.)

DELETE Statement

Removes a permanent dataset from the DSC when the dataset has been accessed
with unique access (UQ) and possibly maintenance permission.

DELETE,DN=dn,NA,PARTIAL.
Example:

DELETE,DN=A.
(Removes any knowledge of the permanent dataset A from the DSC.)

2.16 SWCEIMOD 11/85

()

FILE

MRSTER DEUICE

DELETHE

ACCESS,DN=MINE,PDN=FILE,UQ.

DELETE,DN=MINE.

ONT ===

L

FRONT-END

17

ORT

USER HHRER

1/0 BUFFER

SWCEIDEL 11/85

- -

AUDIT Statement
Provides a listed repoﬁ on the status of each specified permanent dataset known to the
system (on the DSC).

AUDIT,L=ldn,B=bdn,PDN=pdn,ID=uid,US=usn,DV=dvn,SZ=dsz,
X=mm/dd/yy:'hh:mm:ss',TCR=mm/dd/yy':'hh:mm:ss,
CW=ccw,OWN,ov,LO=opt:opt,BO=opt:opt.

The listed report will be those datasets that match the user number.

Example: Comments:

AUDIT. Lists all permanent datasets.

- AUDIT,PDN=JCLTST,ID=TNG. Lists only name JCLTST with
an ID of TNG.

AUDIT,PDN=J CL-,ID:TNG Lists all names beginning with
JCL which have an ID of TNG.

)

2.18 : SWCELIAUD 11/85

.13

03/14/84

T4:20:11

PAGE

LAST

ACCESSED MODIFIED

LAST

LAST
DUMPED

AUDIT cos X
OWN = U9909
1D = DIAGSYS
PDN ID
sz RT AGC
ARBU DIAGSYS
1024 45 51
CMXU DIAGSYS
3584 45 8
CRAYPL DIAGSYS
757486 45 73
CRAYPL DIAGSYS
704000 u5 5
ECD DIAGSYS
26010 L5 1
ECD DIAGSYS
26010 45 7
FGA DIAGSYS
24916 45 60
FGLIST DIAGSYS
19369 45 54
1200PL DIAGSYS
461312 45 26
10PPL DIAGSYS
460288 45 1
1oPPL DIAGSYS
460288 45 7
X200PL DIAGSYS
573865 45 126

12 DATASETS,

N RWM

17
N RWM

12
N RWM

02/22/84
13:28:58

03/07/84
08:35:08

03/08/84
13:51:58

03/13/84
14:33:04

03/13/84
14:34:29

03/13/84
15:12:01

02/28/84
18:15:52

02/29/84
14:27:23

01/10/84
08:11:20

03/13/84
14:30:40

03/13/84
15:09:23

03/07/84
12:37:29

6873 BLOCKS,

03/09/84
16:04:32

03/09/84
13:22:49

03/14/84
14:13:31

03/14/84
14:12:27

03/13/84
T4:34:29

03/14/84
08:471:45

03/14/84
07:23:11

03/14/84

14:01:19

03/14/84
14:03:45

03/13/84
14:30:40

03/14/84
14:05:32

03/14/81 .

14:17:19

03/10/84
13:26:26

03/10/84
13:17:06

03/10/84
13:15:22

03/13/84
21:12:51

03/13/84
21:13:58

03/13/84
21:14:57

03/10/84
13:21:09

03/10/84
13:18:41

03/10/84
13:22:34

03/13/84
21:13:09

03/13/84
21:14:57

03/10/84
13:23:27

3518152 WORDS

2.19

DD-A2-23
DD-A1-22
DD-A1-22
DD-A2-22
DD-A2-25
DD-A1-21
DD-A1-22
DD-A2-20

DD-A2-23

PDSDUMP Statement

: 7N
Dumps a specified permanent dataset to another dataset that may then be saved or
staged to a front-end.
PDSDUMP,DN=dn,DV=1dv,PDN/PDS=$pds, CW=cw=ID=uid,US=usn,
ED=ed,X,C,D,L,O,S,SO,INC=mn/dd/yy: hh:mm:ss/,
OWN=0v,TX=0pt, ARC=mmddyy:'hh:mm:ss’.
By use of certain parametérs the utility provides backup datasets or a convenient
method of deleting groups of permanent datasets.
Examples: Commments:
PDSDUMP,PDN=JCLTST,D. Copies JCLTST to $PDS
and deletes JCLTST from
the DSC.
PDSDUMP,PDN=JCLTST,ID=TNG. Copies JCLTST with an ID
of TNG to $PDS.
N
PDSDUMP,PDN=JCLTST,D,X. Copies JCLTST to $PDS if
expired and deletes it from
the DSC.
N
~

2.20 : SWCE1PDSD 11/85

Permanent Datasets residing on Mass Storage |

PLSDUMP

$PDS

2.21

PDSLOAD Statement

Loads (creates DSC entries) permanent datasets ﬁpm a dataset created by the PDSDUMP

utility.

PDSDUMP,DN=dn,PDN/PDS=$pds,CW=cw,ID=uid,US=usn,
ED=ed,A,L,O,S,0WN=0v,NOWN=nov,DV=dvn,RP,

CR,NA,SO.

If the dataset already exists in the DSC no action is taken.

These two utilities (PDSDUMP, PDSLOAD) are used to archive permanent

datasets on a front-end and restore the DSC.

Example jobs:
JOB---——.
PDSDUMP,US=CRT.

DISPOSE,DN=$PDS ----- .
EXIT. '

PDSLOAD.

EXIT.
/EOF

222

Comment:

Dumps all permanent datasets
with a user name of CRT.

Loads the datasets in $PDS into
the DSC.

SWCEIPDSL 11/85

()

$PDS

PDSLOAD

Permanent Datasets residing on Mass Storage

2.23

DUMPJOB Statement
Causes creation of a local dataset named $DUMP and forces the entire user area
(JTA-LA) to be written to disk as an unblocked dataset.
DUMPJIOB.

The DUMPJOB statement cannot be the first statement following a job staternent
or be used for execute-only datasets. By convention it should be used following
the EXIT statement to aid in debugging an abort condition.

Once $DUMP is created it may be used with the statements DUMP, DEBUG,
and FLODUMP.

DUMP Statement

Reads and formats selected portions of the dataset SDUMP and writes the
information to another dataset, normally $OUT.

 DUMP J=idn,O=odn,FW=fwa, . W—lwa JTA,NXP,V,DSP,
FORMAT=f,CENTER. :

By convention this statement usually follows the EXIT and DUMPJOB
statement in the case of a job step abort.

Example: Comment:
JOB, -—--.
EXIT. Normal job end.
DUMPJOB. Dumps entire user area to SDUMP in
the event of a job abort.
DUMP. Dumps words 0-200 of the user area
- (by default).

2.24 SWCEIDUMP 11/85

()

JOB TABLE AREA

USER JOB AREA

BA

LA-1

DUMPJOB

- $DUMP DATASET

DUMP

$ouT

2.25

DSDUMP Statement

Dumps specified portions of a dataset to another dataset in either blocked or

unblocked format.

DSDUMP,I=idn,0=0dn,DF=df,IW=n,NW=n,NR=n,IF=n,IS=n NS=n NF=n.

The only required parameter is the input dataset name of 1-7 alphanumeric

characters.

Examples:

REWIND,DN=SWCE3.

DSDUMP,I=SWCE3,DF=B,NW NR,NF.

REWIND,DN=SWCE3. °

DSDUMP,I=SWCES3.

Comments:

Positions pointer at
beginning of SWCE3.

Dumps all words of all
files of dataset SWCE?3 to
$OUT.

Positions pointer at
beginning of SWCE3.

Dumps only word one of
the first record of the first
file in dataset SWCE3.

SWCEIDSDUMP 11/85

()

ANO QYOJ3Y FIYHL 3114

do3a/ .

9shee Lo

MANLSYDJONWTIN M I HO43a0aY

L 39vd

68.L

103/
ZAX

2L:65'60 h8/hL/90

0000000000000000000000

0000000000000000000000
0000000000000000000000
0000000000000000000001L
0h00200L0H002001L0h0020
0t00221291L4Lh00LhOLLGO

0t002001L010020010h0020
0t00200L01700200L0K00Z0
0t002001L04002001L010020
0002001 01002001L0h0020
99h2E04LE90LESHLO90020
0h00200L017002001050020
05002001 0%00200L0H70020
<L00000000000000000001L
0500200£0H002001 070020
INARLTATA FANRY L FARAN LAY

8GLh8 €11

0000000000000000000000

00000000000000600000000
00000000000000000000/L 1
0100200L0Hh002001L0%0020
0%002001L0Kh002001L0K0020
VAR (FARAAAR LA R T KAy

0t002001L0%002001.050020
0t0020019042.4212L50020
071002001 0h002001L0H0020
01002001 0%002001L040020
2100000000000000000001L
0h002001017002001.0%0020
01002001 0100200100020
01%002001L04002001.0%0020
011002001L0h00200L070020
LltlihegeLaqhheelLLhho

dWnasa

0000000000000000000000

0000000000000000000000
0000000000000000000091L
0t00200L0h002001050020
0400200L0%00200L0K0020
0LL250014501L9h222901L020

0t0020010h002001L0t0020
2100000000000000000001L
01002001L0h002001L0H0020
01002001L0%7002001050020
0£0020010Hh00200L0K0020
0t00200101002001L070020
0170020010t002001L0t0020
0H002001L01002001L0%0020
0h00200L0%002001 040020
LOLERSLSHOGLEH0Z1L01L020

dWNASA 40 ANI snuw

0000000000000000000000
' HHHRHR
0000000000000000000000
0000000000000000000091L
01002001 0%002001L0%0020
0h00200L0700200L0H0020
21L00000000000000000001L
HHHH N

07002001 07002001L070020
0h002001L0%00200L0H0020
0h0020010500200L0H0020
01700200L01002291L0L7EEO
01002001 0100200L0450020
07002001L0H00200L0H0020
017002001L90G6Lh212.60020
0%00200L0400200L0H0020
0700200L0h002H92 L€ 1L KGO
<1 00000000000000000000

L H0L103S

2.27

605000

190000
L60000
£60000
.610000
$t0000

LE0000
££0000
620000
620000
120000
L10000
€10000
600000
500000
100000

FETCH Statement

Allows the user to make a dataset stored on a front-end local fo a job. It DOES NOT
make the dataset permanent on the Cray system.

FETCH,DN=dn,SDN=sdn, TEXT=text,MF=mf,TID=tid, DF=df.

Example: Comment:

FETCH,DN=$PROC,MF=M4,TEXT=MTO0:0. A copy of $PROC is
"fetched" from front-end
M4 and is made local to the

job. The text field is code
for the front-end.

2.28 " SWCEIFE&AC 11/85

®

FETCH

FETCH,DN=DATA MF=M4,TEXT=DSN= .

-

FILE

DscC

OAT

N—

MASTER DEUICE

ONT
DAT

- - - -

USER RRER

- 1/0 BUFFER

FRONT-END

7 <>
DATA

—

2.288 SIWWCEIFET

11/85

ACQUIRE Statement

Allows the user to make a dataset stored on a front-end local to a job and at the same
time makes it a permanent dataset on Cray mass storage. The statement causes a
search of Cray mass storage for the dataset before it looks to the front-end for it.

ACQUIRE,DN=dn,PDN=pdn,ID=uid, ED=ed RT=rt,R=rd,
W=wt,M=mn,UQ, TEXT=text, MF=mf, TID=tid,
DF=df,0OWN=o0wn,PAM=mode,ADN=adn(m),TA=opt,
NOTES=notes.

The only required parameter is the dataset name of 1-7 alphanumeric characters.

Example: Comments:
ACQUIRE,DN=JCLTST,ID=TNG,MF=M6,"
TID="LD2:TNG'. A copy of dataset JCLTST
with an ID of TNG is

"acquired" from front-end
M6. The TID is the
destination terminal.

ACQUIRE,DN=JCLTSTMF=AP A ’
TEXT=DSN= ', PAM=N. A copy of dataset JCLTST

; is "acquired" from
front-end AP. The text
field is code for the .
front-end and the public
access mode is NO
PUBLIC ACCESS.

. 2.29 SWCEIFE&AC 11/85

)

ACQUIRE

ACQUIRE,DN=DATA MF=M4,TEXT=DSN= .

FILE

-

______________ 4 1/0 BUFFER

ONT ===
DAT

USER RRER

MASTER DEUVICE

g - e e MmNl e e A et e et R e e e e

FRONT-END

2.29R

- o ww o w0 en o o

- w om e e e am

Rl

SIDCETACQ

il |

—— =

11/85

DISPOSE Statement) N
Directs a dataset to the CRAY oufput queue or may be used to alter dataset
disposition characteristics.

DISPOSE,DN=dn,SDN=sdn,DC=dc,DF=df MF=mf,SF=sf,
ID=uid, TID=tid, ED=ed R T=rt,R=rd, W=wt,M=mn,
TEXT=text, WAIT,NOWAIT,DEFER,NRLS.

The only required parameter is the dataset name of 1-7 alphanumeric characters.
Examples: Comments:

DISPOSE,DN=SWCE1,MF=AP,DC=PR,SF=A. Outputs dataset SWCE1
to front-end AP's printer.
SF is a special form code

used by the front-end.
DISPOSE,DN=SWCE1,MF=AP DC=MT,*
TEXT=DSD:0:NR. Ouputs dataset SWCE1
to mag tape on front-end
AP. The text field is code A~

for the front-end.

()

2.30 ’ SWCELIDISPOS 11/85

-

FILE

oscC

OAT

N—

MRASTER DEUICE

DISPOSE

DISPOSE,DN=LOCAL,DC=ST,MF=M4,TEXT=DSN .

--------------- -1/0 BUFFER

FRONT-END

P e e b bt b B et et bt e et bt e e e bt

ONT ===
OAT

USER HRER

2.31

vy

DATA

SWCEIDIS 11785

SUBMIT Statement
Directs a dataset to the CRAY input queue as a job. The first file must be a JCL.
file.
SUBMIT,DN=dn,SID=mf,DID=mf, TID=tid, DEFER,NRLS.

The only required parameter is the dataset name of 1-7 alphanumeric characters.

Examples: | Comment:
SUBMIT,DN=TLOAD,NRLS. Directs job TLOAD
to the CRAY job queue.

It will remain local to this

job after submission

(NRLS).

2.32 SWCE1SUBMIT

11/85

)

N

FILE

DsSC

OAT

N~—

MHASTER DEDICE

SUBMIT

SUBMIT,DN=MINE,NRLS.

FRONT-END

2.33

SWCEISUB

11/85

CONTROL STATEMENT BLOCKS

. Control statements that are grouped in a file comprise a control statement block.
Control statement blocks provide:
Conditional control statement processing.

A sequence of control statements is processed only if the specified
condition is met.

IF defines the beginning of the sequence block.
ENDIF defines the ending of the sequence block.
ELSE is used to define an alternate condition.

ELSEIF defines an alternate condition to test.

Iterative statement processing.

A sequence of control statements is processed repetitively until the
specified condition is met.

LOOQP defines the beginning of the iterative block.
ENDLOOP defines the end of the iterative block.
EXTTLOOP defines the conditions under which the iterative block
is to end.
Procedure definitions (PROCs).

A sequence of control statements and/or data that has been saved for
processing at a later time.

A subprogram or subroutine of control statement blocks.

Parameter substitution and passing is available.

2.34 SWCEICSB 11/85

()

Lo
L”; control statement
1 sequence

S
\hﬂ control statement
il sequence

o — e R

‘1 control statement
sequence

%ﬂ IF (expression)

Conditional block structure including ELSEIF and ELSE

ENDLOOP. N

Wicontro] statement
| sequence

EXITLOOP(empression)

-

s
wﬂ control statement
il sequence

LOOP.

™~

Iterative block structure

2.35

PROCEDURES
A series of control statements in a library called for processing at a later time.

A simple PROC consists only of control statements and must be invoked through the use
of the CALL statement.

A well-defined PROC consists of a prototype definition statement, control statement body, and
optional data.

WELL-DEFINED PROCS

Provides the capability of replacing values within the procedure body by values supphed from
the procedure call (Invocation).

A PROC control statement is the first statement in an in-line procedure.
A prototype statement is the next statement in an in-line procedure.
A definition body and optional data are the next statements in an in-line procedure.

An ENDPROC statement is the final statement in an in-line procedure.

2.36) SWCE1PROCS 11/85

()

“w €0S control

) R statements
prototype statement 'W

PROC.

Procedure definition deck structure

2.37

PROCEDURE DEFINITION
The PROC statement defines the beginning of an in-line procedure definition block.
PROC.

The ‘prototype’ statement is next and specifies the name of the PROC and parameter
specifications.

NAME is the name of the PROC and can be 1-8 alphanumeric characters long. Py...p, are

the parameter specifications. Either positional or keyword specifications are allowed. (See
SR-0011). ‘

The 'definition’ body is next and consists of a series of CRAY control statements and optional
substitution parameters. .

The ENDPROC statement is the final statement and indicates the end of an in-line procedure.

ENDPROC.

2.38 SWCE1PROCDEF 11/85

_ EXAMPLE 1.

PROCEDURE EXAMPLE

This PROC will delete a permanent dataset.

Line 1

Line 2
N’

Line 3
~ Line 4.5

Line 6 -

PROC.

ERASE,DSX,ED=:,ID=DON1:DONZ2.
ACCESS,DN=MYDON,PDN=&DSX,ED=&ED,ID=&ID,UQ.
DELETE,DN=MYDON. ,

RELEASE,DN=MYDON.

ENDPROC.

QNP D

- Defines the beginning of an in-line procedure definition block.

- Is the prototype statement which specifies ERASE' as the PROC name.
- Also defines three parameters, two of which are in keyword.
Format:

DSX - Parameter must be supplied by the user when the PROC is
invoked. A required positional parameter.

ED=: - Provides no default values, but allows the user to specify a value.
ID=DON1:DON2
- Provides DON1 as the default value if TD' is omitted from
the calling statement (DVALUE).

- Provides DON2 as the default value if TD' is present without
avalue (KVALUE).

-Isa pﬁrt of the definition body.

- DN=MYDON is a parameter which is used in tﬁe access control statement.
- PDN=&DSX is a substitution parameter that a user is required to supply.
T D=&ED is a substitution parameter that a user may supply.

- ID=&ID is a substitution parameter that a user may supply.

- UQ opens the dataset exclusively.

- Cray control statements to delete and then release the local dataset MYDON.

- Indicates the end of an in-line procedure.

2.39 SWCEIPROCEX 11/85

MAGNETIC TAPE DATASETS

A magnetic tape dataset is available to any job declaring tape resource requirements on the JOB
statement and specifying the appropriate information on its access request.

A magnetic tape can be unlabeled (NL), ANSI standard labeled (AL), or IBM standard lableled
(SL) and can be recorded or read at either 1600 or 6250 bits per inch (bpi).

COS automatically switches volumes during dataset processing and returns to the first volume of a
multivolume dataset in response to a REWIND command. If a permanent write error occurs when
trying to write a tape block for the user, COS automatically attempts to close the current volume and
continues to the next volume.

The COS tape system uses Buffer Memory (in the IOS subsystem) as a tape blocked buffering area
so that the job's I/O buffer need not be as large as the tape block. This technique can result in
significant memory savings whenever large tape blocks are being processed and in increased
transfer rates whenever smaller blocks are being processed. The advantage in having a large COS
buffer is a reduction in the overhead in the tape subsystem.

With Release 1.13 positioning support for tape datasets is possible. Users can position a tape
dataset at any block on any volume, obtain the current position information for a tape dataset, and
enable recovery of tape jobs after a system interruption.

Also, a MOD parameter has been added to the ACCESS control statement for use with on-line
tapes. When MOD is specified on an access of a tape dataset, any data written to the datset is

appended to the data already contained in the dataset rather than being written from the beginning of
the dataset. _

A tape dataset is created by an ACCESS statement with the NEW parameter.

The ASSIGN statement can be used to create the dataset characteristics such as buffer size and
precedes the ACCESS,NEW ,DN= statements.

2.40 SWCEITAPEDS 11/85

)

TAPE JCL EXAMPLE

JOB,IN=EXAMPLE, *6250=2.

ACCOUNT,AC=accounti.

ACCESS,DN=INTAPE,DT=*6250,VOL=1000:1001.

ASSIGN,DN=INTAPE,A=FT20.

ACCESS,DN_OUTI‘APE PDN=EXAMPLETAPE,L B=SL,DF=IC,CS=SL,DT=*6250,"
XDT=83365,VOL=2000:2001,NEW.

ASSIGN,DN= _OUTTAPE LA=FT21.

PROGRAM EXAMPLE
READ (20,xx) . . .
WRITE (21,xx) . . .

/EQOF

In this example job a FORTRAN program reads a magnetic tape dataset on unit 20 and writes a
magnetic tape dataset on unit 21.

The input tape has the following characteristics:

Non-lableled

Transparent format

ASCII character set

6250 bpi

Volume identifiers: 1000 and 1001
COS blocked format

The output tape has the following characteristics:

IBM standard label

Permanent dataset name = EXAMPLETAPE

Interchange format :

EBCDIC character set

6250 bpi

Expiration date = 83365

Volume identifiers: 1000 and 2001

This dataset is to be created (by use of the NEW parameter)

The permanent dataset name corresponds to the file identifier in the tape label.

2.41 : SWCEITAPEX 1185

()

JCL QUIZ

1. What statement does every job require?

2. What dataset format will COPYD statements process?

3. What is dataset staging?

4. What statement tells you what datasets exist on mass storage?
5. 'What statement is used to deallocate a local dataset?

6. What is a permanent dataset?

7. What JCL statements are needed to delete a permanent dataset?
8. How is a text dataset represented in COS?

0. What is the first file of every job. submitted to a Cray?

10. When would you use PDSLOAD?

243 . | SWCE1Q2 1185

()

()

C)

Cray’s Text Editor- TEDI

3

()

()

()

MODULE OBJECTIVES
Upon completion of the TEDI and Interactive module, and with the aid of all furnished reference
material, the learner should be able to:
1. Use an Interactive Station
2. Create a CAL program with TEDI
3. Execute a CAL program interactively
4. Modify the source code with TEDI

5. Save, access, and modify a text dataset with TEDI

31 SWCEITEDIMO 11/85

USING TEDI

This section explains the basic usage of TEDL TEDI is an interactive line editor on a Cray
computer system operating under control of COS. TEDI can be used to edit computer programs,
data, documentation, or any other text files.

TEDI's most commonly used commands are demonstrated through the creation and modification of
a CAL program. Read through this section once first to get the big picture of how TEDI is used,
then complete it step by step.

The first step is to log onto the terminal. This section describes use of an AMDAHL as the
interactive station. The user IDs and passwords are those available to the Software Training
Department at Mendota Heights and will be different thatn those used at your site. If this module is
used within Mendota Heights the IDs and passwords will be the same as used in this module.
Keep in mind that you will probably use TEDI on the IOP station at your site.

To begin, make sure you have the AMDAHL logon screen on your terminal, then depress the
"ENTER" key on the console. This key will be denoted by a3 throughout this module. The
console displays 'CP read' in the lower right corner of the screen. -

Response L TNGxx) Where xx is your training ID.
Display ENTER PASSWORD:
Response TNGxx Your training password.
Display LOGMSG (see example below)
Response CRINT 2 This gets you the interactive station.
(IAC for IOP Station)
(IAS for DB AQOS Station)
Display ENTER "/LOGON") Similar to the JOB statement.
Response /LOGON ‘2

This last response should get you the interactive station under directory TNG. |
L U1502
ENTER PASSWORD:

LOGMSG - 10:29:57 COT TUESDAY 08/28/84

*

FOR COMPLETE LOG MESSAGE TYPE: Q LOG
LAST LOG UPDATE:VM STATION UNAVAILABLE
LAST UPDATE TIME: 08/28/84 10:30

*
*
*
*
*
*
*

* A K ok ok Ok ok *

ENTER "CRAYNEWS" FOR CRAY INFORMATION.
*

LOGON AT 11:41:46 CDT TUESDAY 08/28/84
VM/SP REL3 03/27/84
CRINT
U (19C) R/O
R; T=0.50/0.57 11:41:53
ENTER */LOGON"
/LOGON
32 , SWCEITEDIUSE ~ 11/85

®

AMDAHL VM STATION COMMANDS

====> STATION MENU Cs====zm==> HELP INFORMATION: {==s=======
The Cray station is the software component that you use to communicate with
the Cray from your CMS environment. VYou can use the station +g send batch
Jobs to the Cray, or to use the Cray interactive facility, or +to check the
status of Cray jobs or disk storage.

To access the station, you can use the following CMS and COS commands:

ACQUIRE - to acquire files from the VM machine to a Cray Job
FETCH — to fetch files from the VM machine to a Cray job
CRCHOOSE — to set up the station for talking to the XMP or CRAY 1S
CRINT — to use the Cray interactive facility

CRSAVE - to save a CMS file on the Cray or to submit a batch job
CRSTAT — to display the status of Cray jobs

CRSUBMIT -~ to submit a batch job

DISPOSE - %o send files from a Cray job to the VM machine

The OPERATOR help file tells how to operate the station.

Use the following menu to find out more about these commands.
Place the cursor under any character and press the PF 1 key.

ACQUIRE CRINT CRSTAT CRSUBMIT DISPOSE FETCH OPERATOR
CRCHOOSE CRSAVE

!
1= Help 2=.Top 3= Guit 4= Return o= Clocate &= 2
7= Backward 8= Forward 9= PFKey 10= Backward 1/2 11= Forward 1/2 12= Cursor

e

MACRO-READ 2 FILES

3.3

Once in interactive mode the screen displays the interactive prompt '!'.

!
Response ACCOUNT,AC=account#,US=TNG,UPW=TNG. 2
: .

Response TEDLDN=TEDII1. Q TEDI1 is the dataset you are going to create and
edit under the TEDI utility.

A similar message to the following should appear on your screen followed by the TEDI prompt *'.

TE017 NEW DATASET.
TEDI1 0 LINES.
*

You are finally executing the TEDI utility, so now you can type in a program.

The following exercise command steps will create a CAL program to square a value in memory
location NUMBER' and store the result in memory location 'ANSWER'. As you use TEDI
commands refer to SG-0055, Section 4, for further information. Key in the example.

Do not use the tab key; two spaces are a TEDI tab character.

()

34 SWCEITEDIUSE 11/85

EXERCISE 1

Step 1,
Display

Step 2.
Display

Command

Responses

Step 3.
Display
Command

Display

ES

STS 10 20 35

& %g*
<

%%%%%%

*
W
TEDI1

ES

CREATING A CAL PROGRAM

Double spacing will now tab.
Adds lines to a dataset (TEDI1).
The & prompts for the line insertion.
"IDENT SQUARE)
START HERE
= * D
A2 NUMBER,0 GET
A3 NUMBER,0 OPERANDS 1
Al A2*A3 SQUARE # D
ANSWER,0 Al g
ENDP)
CON 5 2
BSS 12
END
The period terminates the AL command and will
display the contents of TEDI with line numbers.
Writes your program to dataset TEDI1.
I2LINES The number of lines in dataset TEDI1.

You now have a local dataset ﬁamed TEDI1 that you may SAVE, ASSEMBLE, etc. Remember
you are in interactive mode, so many possibilities for this dataset exist.

35 SWCEITEDICAL 11/85

Tn order to manipulate the dataset TEDI1 further you may exit the TEDI utility. Remember; you
have the * prompt on the screen.

Step 4.
Respond END) To terminate TEDI and update the dataset if not updated
previously. At this point you already have updated
 TEDI1 through the W command.

You should now be back into the interactive station. A '!' prompt should appear on the screen. It
takes concentration to remember what is actually taking place on the screen. The easiest method is
to remember the prompts (* for TEDI and ! for interactive station).

Your interactive station looks like datasets $IN and $OUT to COS so knowledge of JCL and COS
is imperative when submitting further commands.

To SAVE dataset TEDI1 as a permanent dataset type:
!SAVE,DN;I‘EDII,D=TNGXX.. D

To ASSEMBLE dataset TEDI1 type:
ICALI=TEDIL.)

After ASSEMBLY, to EXECUTE TEDII type:
ILDR.

'RELEASE,DN=TEDII.
IACCESS,DN=TEDI,ID=TNGxx,UQ. L

You are now ready for Exercise 2 where you will change lines of source code.

3.6 SWCEITEDICAL 11/85

()

EXERCISE 2

STEP 1.
Respond
Display

Command

Insert

Display

STEP 2.

Display

Command

Command

MODIFYING TEDI

I'TEDLDN=TEDI1.)

*
BL1)
&

Now in TEDI.

To add comments before line 1.

*THIS PROGRAM SQUARES A NUMBER Q

&

"

& A4

T)

The period terminates the BL command.

View TEDI1 with néw line numbers.
You will replace line 6.

Number,0 Replacement line. Q

Terminates the RL command.

Allows you to change parts of a line.

You must now space the cursor in line 7
(Al A2*A3)to beneath the 3 in A3.
Once you have done this type:

Rewrites TEDI with all changes included.
NOTE: You may use the W wherever you deem
necessary, but the rewrite should be done
periodically during an editing session to prevent
loss of current changes due to system failure.

If TEDI1 has been made a permanent dataset on
the Cray you will be asked permission to update
the dataset. That is, if you have accessed it UQ.

View TEDII1 with the new changes.

3.7 : SWCEITEDIMOD 1185

Interactive mode enables the terminal to both send and receive from the Cray as datasets in $IN and
$OUT. Each interactive command ($IN) is sent to the Cray and executed. A response will appear
on terminal ($OUT) as if it were the message in the user's $LOG. As an example, suppose you
wanted to ASSEMBLE and EXECUTE dataset TEDI1 which is a permanent dataset on the Cray.

Type in:

IACCESS,DN=TEDIL. Accessing TEDI1.
ICAL,DN=TEDII. J Assembling TEDII.
'LDR. . ' " Executing TEDIL.

The next three JCL statements transmit a dump of TEDI1 back to Software Training's printer.
[DUMPJOB. Dumps entire TEDI1 job.
IDUMP,0=FREND. 4 Dumps words 0-200g to FREND.

IDISPOSE,DN=FREND,MF=V3,DEFER,DC=PR, TID=RSCS,TEXT=TAG=TNGA" ¢
Prints FREND on Software Training printer.

38 SWCEITEDIMOD 11/85

()

ADDING COS SYSTEM FUNCTIONS

EXERCISE 3

We will assume TEDI1 is still in the form it was after Exercise 2. Ifyour TEDII is not, modify
the program to alter it back to this form.

We will add the JCL statements necessary to create a job dataset suitable for the Cray job input
queue. : .

Step 1.
| * TEDI prompt reminder.
BL) You will add JCL statements to the program.
&JOB,IN=TNGxx.) Job card.
&ACCOUNT,AC=account#, US=TNG,UPW=TNG.).
&CAL.). To assemble TEDIL.
&LDR. 2 Execute program.
&EXIT.
&DUMP,0=FREND.
&DISPOSE,DN=FREND,MF=V3,DEFER,DC=FR, TID=RSCS, TEXT='"TAG=TNGA".)
&EXIT.)
&. /_)_ Terminates the BL command.
*
T) EMne TEDI]I to ensure completeness.
|
Step 2.
*END) Command to update TEDI1.
! : | Back to interactive mode.
SUBMIT,DN=TEDI!. Submit job to Cray.
! Back to interactive mode.
/LOGOEF Q J To leave interactive and return to the station
‘ operating system.
LOGOFF ,J To log off the Amdahl.

39 SWCEITEDICOS 11/85

()

10.

TEDI QUIZ
What character indicates you are in interactive mode on the Cray?
What character prompts for line insertion in TEDI?
What character indicates TED] is awaiting a command?
What command terminates TEDI and updates your dataset?
What is the command to insert a line before line 6 in a TEDI dataset?
What character terminates a TEDI command?

What parameter must be included on the ACCESS statement in order to make
changes to the accessed dataset?
What command is issued to ask to be put on the Cray mteractively?

What is an advantage to using TEDI?

What is a disadvantage to using TEDI?

3.11 SWCEIQ3 11/85

sduo 03 vabio B 3

ey

SIUG AT

 sesigb YOAT & i D sail si0¥od suil & oani of hukmupoo o) # wAW

Chasmmos HITT s sassnimne 1as058d0 1dW

C1eanigb hosaooos o) uf asgasdy

gl ¢E10 ot 5o Jug 2d ol das of beusat al buemmes wdW

asvbe o8 a W

)

o

1

Pk

01

()

Cray Assembly Language

4

@

)

MODULE OBJECTIVES

Upon completion of the Cray Assembler Language module, and with the aid of all furnished
reference material, the learner should be able to:

1. Read simple CAL programs'
. Write a CAL program
Assemble a CAL program
Debug a CAL program
Create a binary load module
Run an object program from a library
Explain the difference between relative and absolute binary datasets

Read a loader map

I T - SRV R N RS

Create an executable binary dataset

—
O

. Run an executable binary dataset

4.1 SWCEICALMO 11/85

A POWERFUL ASSEMBLER
CAL is a powerful translator with high level language features.

CAL,CPU=type,I=idn,L=1dn,B=bdn,E=edn,ABORT,DEBUG,
LIST=name,S=sdn, T=bst,X=xdn.
CAL source statements are:
Symbolic machine instructions or pseudo instructions
Symbolic Machine Instructions:
Represent functions of Cray CPU architecture
Translate one for one
- one symbolic machine instruction translates to
one binary machine instruction
Pseudo Instructions:
Allow programmer control of assembly process
Generally do not generate code
Provide features which include:
- control of the content of the assembler listing
- data defined and loaded with program
- source code and data can be assigned to specific areas in memory
CAL source statements can also include:

Macro code:

A sequence of code defined in the source program and assembled in
the object program when the assembler calls it

The assembler may produce many binary machine instructions to
complete a macro operation

Opdef code:

Recognized by syntax pattern and uses nonverb-structured syntax

System text:

Defines macros and opdefs to the assembler

4.2 SWCEICALPA 11/85

$SYSTXT

Source

$IN

Assembler
Listing
fouT

Cross
Reference

$OUT

Binary
Load Module
$BLD

User Text

4.3

Error
Listing
$O0UT

Symbol
Table

$BLD

SOURCE LINE FIELDS

Location field:
Must begin in columns 1 or 2.
No entry is gssumed if colms 1 and 2 are blank.
Terminated by a blank.
Optionally contains up to an 8-character symbol which must begin with
(A-Z,3,%,@).
Result field:
- First non-blank character following the location field.
- Terminated by a blank.
Must begin in columns 3-34.

No entry is assumed if columns 3-34 are all blanks.

Operand field:
First non-blank character following the result field.
Terminated by a blank.
Moust begin at column 34 or before.
* If the result field extends beyond column 32, the operand field must
follow one blank separator.
Comment field:
~ First non-blank character following the operand field.
If the operand field is empty then it must start at column 35 or beyond.

NOTE: An asterisk (*) is column 1 indicates to the assembler that what follows in
that line will be a2 comment.

4.4 SWCEICALSLF 11/85

O

EXEC --GRAY OPERATING SYSTEM EXECUT!VE--
INIT/BOOTIT

15534c 031550
d 030446
15535a 011 00015532b
c 0401 00000001
15536a 0402 00000003
¢ <macro>
15540d 022201
15541a <macro>
15542a 022600
b 022720
¢ 007 00026351b
15543a 022600
b 04071 0015741a
d 042277
15544a 1203 00002040
¢ 007 00026613a
15545a 071302
b 1303 00000013
d 0207 00003620
15546b 0206 00000120
d 032626
15547a 030667
b <opdef>
15551a <macro>
15553d 0203 00001750
15554b <macro>
15555b <opdef>
15556b 031330
c <macro>
15557b <macro>
‘d <macro>
15560c 030220
* d <macro>
15561b <macro>

b 0206 00003762

* k¥

* k% k% Kk

* %k K

* %k k%

* k

% & ¥k

CRAY XMp CAL'1;14(12/11/8Q) 12/14/84 10:51:11

A5 A5-1
Al AlL+AL
JAN BOOT4O If more entries to process
Start all defined CPUs if able to.
S1 C@CPQUAN Number of CPUs assembled
sz C@CPTYPE Mainframe type
SIF (ST,GT,S?=1),AND,(SZ,EQ,S7=@CRAYXMP)
A2 1 Initial CPU to start

Loop attempting to start CPUs 1 through C@CPQUAN-1.
If any processor does not start, assume the rest
are not available,

SLoop

A2, LT, A7T=C@CPQUAN

Build an initial exchange package for this CPU.

S3

WeXPS3+INI

INITXP

LE@XP

CLEAR Clear the exchange package area
INITXP

STCPU Start address

1 Mode to monitor mode
S@XPMM, NE, SBXPH+NEXPM~1

XLA, 0 Limit address

SETXP Set up the exchange package

A2
TXP,0 S3 Processor number being started

Indicate the request to start in the CPUs PWS entry.

B@PWS+LHEPWS FWA + Header length
LE@PWS Entry length

AZFAG Entry number

A6+AT Address of PWS for this CPU

S6&S7,PWINIT,A6 Set request-to-start flag
PN=A2 ,SCR=A3, ERROR=SSTOPO8L

Check to see if this one started.

A3

sLoop
GET, S1
A3

SEXITLP
SENDLOOP
SEXITLP
A2

SENDLOOP

SENDIF

D'1000
A3,GT,A7=0

Arbitrary number of tries
before declaring a CPU dead.

Page 89
(89)

LC5921XA.207
LC5921XA.208
LC5921XA.209
NO81130F.276
NO81130F.277
NO81130F. 278
NO81130F.279
NO81130F.280
NO81130F.281
NO81130F.282
NO81130F.283
NO81130F. 284
NO81130F.285
NO81130F.286
NO81130F.287
NOB81130F.288
NO81130F,289
NO81130F.290
NO81130F.291
NO81130F.292
NO81130F.293
NO81130F.294
NO81130F.295
NO81130F.296
NO81130F.297
NO81130F.298
NO81130F.299
NO81130F. 300
NO81130F.301
NO81130F.302
NO81130F.303
NO81130F. 304
NO81130F.305
NO81130F. 306
NO81130F.307
NO81130F.308
NO81130F. 309
NO81130F.310
NO81130F,311
NO81130F.312
NO81130F.313
HO81130F.314
NO81130F.315

. NO81130F.316

NO81130F.317

S6&S7, PWEXEC,A6 Get CPU-started-execution flagNO81130F.318
A3-1

S1,NONZERO If CPU did start
$1,ZERO If this CPU did not start
A2+1 Next CPU number

Set up System Task Table (STT) for task 0.

A6

B@STT

4.5

STT header address

NO81130F.319
NO81130F. 320
NO81130F.321
NO81130F. 322
NO81130F.323
NO81130F. 324
NO81130F. 325
LC5922GE. 41
LC5922GE_42
LC5922GE. 43
LC5922GE. 4y

NAMES AND SYMBOLS

N
Names and symbols used in a CAL program module look alike. They have the same syntax
rules, but are used differently.
Syntax:
One to eight characters. o
Letters must be caps and no hidden characters are allowed in the spaces.
Characters other than the first may be 0-9.
Names:
Identify:
Program modules.
Blocks.
Sequences of pseudo instructions.
Do not have values or attributes.
Do not conflict with each other in different contexts.
Symbols:
Are used in symbolic machine instructions such as: ~
Jump addressing.
Memory addressing.
Expression (EXP) evaluation.
Are used in pseudo instructions:
Symbol definitions.
Have values and attributes.
Must be unique.
SYMBOL ATTRIBUTES
Word address - 22 bit value.
Parcel address - 24 bit value (upper 22 bits and word address).
Value - 64 bit value.
Relocatable - symbol addresses in a relocatable assembly.
EXT - symbols defined by EXT pseudo .
Absolute - symbols in an absolute assembly.
Common - symbols defined in a common block.
Redefinable - symbols defined by certain pseudos which may be defined more than once in a ~
program module. : N

4.6 - SWCEICALN&S 11/85

JOB, JN=U1502A.
ACCOUNT AC—26512U, US TNG UPW—TNG

++
* THIS JOB DEMONSTRATES THE DIFFERENCE BETWEEN NAMES AND SYMBOLS
H*
CAL.
LDR, MAP=0ON.
/EOF
IDENT NAME
START HERE
H*
ZERO = 0
H*
HERE = *
#
Al ZERO INDEX
A2 10 MAX LOOP
Al 0 ACCUMULATOR
*
LOOP A3 ADD, A1 LOAD
Al AT+1 INCREMENT TABLE [NDEX
AO A2-A1 CHECK FOR COMPLET|ON
Al A3+AL ACCUMULATIVE SUM
JAN LOOP
*
RESULT,0 Al STORE
SNAP (AL)
+#*
ENDP
*
ADD CON 1,2,3,4,5,6,7,8,9,10
H
RESULT BSS 1
H
END
/EOF

4.7

PROGRAM CONTROL

Defines the limits of a program module.

DpfineS'the type of assembly.

IDENT - Required; marks the beginning of a program module.
END - Required; marks the end of a program module.
ENDP - Required; marks the end of a program.

ABS - Designates absolute rather than relocatable assembly.

COMMENT - Enters a comment, generally a copyright, in the program descriptor table.
BASE - Declares the base for numeric data; diagnostics use M.

SYMBOL DEFINITION

= - Equates a symbol to a value; notredefinable.
SET " - Sets a symbol to a value; redefinable.

MICSIZE - Equates a symbol to the value of the number of characters in a micro string.

DATA DEFINITION |

The following pseudos allow preloaded data to be designated as integer floating point or
character notation. They are the only pseudos generating object binary.

CON - Generates one full word of binary data; forces a word boundary.

BSSZ - Generates words of zeros.

DATA - Generates words of numeric or character data; does not force a word
boundary.

BSS - Reserves words of memory.

4.8 SWCEICALPC 11/85

)

6c

NAME
]
2
10
—
22
N

m o0 o oo

[e]

<gpdef>
<gpdef>
<opdef>

1013 00000010+
030110
031021
030434
011 00000000d+

1104 00000022+
<macro>

<macro>

£¢000000000000000000001
0000000000000000000002
0000000000000000000003
0000000000000000000004
0000000000000000000005
0000000000000000000006
0000000000000000000007
0000000000000000000010
0000000000000000000011
0000000000000000000012

1

ZERO
#
HERE
#*

LooP

ADD

H#*

RESULT
#

IDENT
START

Al
A2
Al

A3
Al
AD
Al
JAN

RESULT,

SNAP
ENDP
CON

8SsS
END

4.9

CRAY XMP

NAME
HERE

CAL X.15(11/16/81)

INDEX
MAX LOOP
ACCUMULATOR

LOAD

INCREMENT TABLE

11/24/84 15:35:44

INDEX

CHECK FOR COMPLETION

ACCUMULATIVE SUM

STORE

-1)2)3,14,5,6’7,8,9,10

CROSS REFERENCE

blank Symbol value is used at this point. R

D Symbol defined at this reference; that is, it appears in the location
field of an instruction or is defined by a SET, =, or EXT pseudo
instruction.

E ~ Declares the symbol as an entry name.

Symbol used in an expression on an IFE, IFA, or ERRIF conditional
pseudo instruction.

R Symbol used in an address expression in a memory read instruction
or as a B or T register symbol in an instruction which reads the B or
T register.

S Symbol used in an address expression in a memory store instruction

or as a B or T register symbol in an instruction which stores a new
value in the B or T register.

Example of page header:
1 66 76 396 105 115
[title lepu type |CAL version |date |time |Page n |
|subtitle Junused |Block:bname |Qualifier:qualnamel (n) |

SOURCE STATEMENT LISTING

The listing for the source statements of a CAL program is organized into
five columns of information.

title line
subtitle line

error location octal code source line sequence
address

4.10 . SWCEICALCR 11/85

)

NAME CRAY XMP CAL X.15(11/16/84) 11/24/84 15:35:44 Pa%e)Z
2

1357a+ $SLOADSS 1:19 1:19 F 1:19 D
1315a+ SSSAVESS 1:19 1:19 F 1:19 D
0X SWFA 1:19 O 1:19
0X SWFF 1:19 D 1:19
0X SWF1 1:19 D 1:19
0X SWFV 1:19 D 1:19
0 %SMULTI SSYSTXT 1:19 F 1:19
1 ZSNEWSEQ SSYSTXT 1:19 F 1:19 .
0 %SSTACK SSYSTXT 1:19 F 1:19
6§ %ARPTR 1:19 D 1:19 F 1:19
0 9BSTKPTR 1:19 D
10+ ADD 1:12 R 1:23 D
0 FSADV SSYSTXT 1:21
0a+ HERE 1: 2 E 1: 6 D
0d+ Loop 1:12 D 1:16
30 N@ARN SSYSTXT 1:19
1 N@ARVAL SSYSTXT 1:19
65+ QZHYU4HZQ 1:19 S 1:19 R 1:19 F 1:19 D 1:19
22+ RESULT 1:18 S 1:34 D
50 S@ARN SSYSTXT 1:19
1 S@ARVAL SSYSTXT 1:19
L SM@SVREG S$SYSTXT 1:19 F 1:19 R
0 ZERO 1: 4 D 1: 8 F 1: 8
Snap (A4) at 0000203b; BO = 0000000a
AL
00000067
15:35:43 0.0000 CSP CRAY X-MP SERIAL-201/40 CRI - MENDOTA HEIGHTS, MINN. 11/24/84
s 15:35:43 0.0000 CSP
15:35:43 0.0000 CSP CRAY 0S - EDITION 218 OF XMs COS X.15 ASSEMBLY DATE 11/19/84
15:35:43 0.0000 csP
15:35:43 0.0000 csp
15:35:43 0.0000 csP JOB,JN=U1502A.
15:35:43 0.0009 csP ACGOUNT, AC=, US=, UPW=. : :
1 5 T 35 R ll3 0. 005“ EXP FH R R H R R R R R R SRR R
15:35:43 0.0054 EXP *
15:35:43 0.0054 EXP # THIS JOB DEMONSTRATES THE DIFFERENCE BETWEEN NAMES AND SYMBOLS
15:35:43 0.005h EXP # -
15:35:43 0.0054 EXP #
15 R 35 .]43 0. 0051‘ EXP HHHHHHHH R R R RS R R R R R R
15:35:43 0.0058 CsP CAL.
15:35:44 . 0.0060 USER CAD01 - {CAL] CAL VERSION X.15 (11/16/84) - GRAY XMP
15:35:44 0.0138 USER CAO34 - [CAL] OPDEF LONGALD REDEFINED IN BINARY TEXT $SYSTXT
15:35:45 0.7548 USER CA002 - [GAL] ASSEMBLY TIME: 0.7489 CPU SECONDS
15:35:45 0.7548 USER CA003 - [CAL] MEMORY WORDS: 81813 + [/0 BUFFERS: 6348
15:35:45 0.7553 CSP LDR.
15:35:46 0.8791 USER LDO00O - BEGIN EXECUTION
15:35:46 0.8794% CsP END OF JOB
15:35:46 0.8794 . CsP
15:35:46 0.8794 cSP
15:35:47 0.8794 USER JOB NAME - U1502A
15:35:47 0.8795 USER USER NUMBER - TNG
15:35:47 0.8795 USER TIME EXECUTING IN GPU - 0000:00:00.8795
15:35:47 0.8795 USER TIME WAITING TO EXECUTE - 0000:00:00.7168
15:35:47 0.8795 USER TIME WAITING FOR 1/0 - 0000:00:02.7711
15:35:47 0.8795 USER TIME WAITING IN INPUT QUEUE - 0000:00:00.0219
15:35:47 0.8795 USER MEMORY #* CPU TIME (MWDS#SEC) - 0.07390
15:35:47 0.8796 USER MEMORY # /0 WAIT TIME (MWDS#SEC) - 0.14242
15:35:47 0.8796 USER MINIMUM JOB SIZE (WORDS) - 25600
15:35:47 0.8796 USER MAXIMUM JOB SIZE (WORDS) - 89088
15:35:47 0.8796 USER MINIMUM FL (WORDS) =~ 22016
15:35:47 0.8796 USER HMAXIMUM FL (WORDS) - 85504
15:35:47- 0.8796 USER MINIMUM JTA (WORDS) - 3072
15:35:47 0.8796 USER MAX|MUM JTA [WORDS) - 3584
15:35:47 0.8796 USER DISK SECTORS MOVED - 496
15:35:47 0.8796 USER USER 1/0 REQUESTS - 118
15:35:47 0.8796 USER OPEN CALLS - . 25
. 5 15:35:47 0.8796 USER CLOSE CALLS - 24
' 15:35:47 0.8797 USER MEMORY RESIDENT DATASETS - 0
15:35:47 0.8797 USER TEMPORARY DATASET SECTORS USED - 27
15:35:47 0.8797 USER PERMANENT DATASET SECTORS ACCESSED - 99
15:35:47 0.8797 USER - PERMANENT DATASET SECTORS SAVED - 0
15:35:47 0.8797 USER SECTORS RECEIVED FROM FRONT END - 0

15:35:47 0.8797 USER SECTORS QUEUED TO FRONT END -) 0

4.11

Outputs contents of registers:

SNAP MACRO

LOCATION RESULT

OPERAND

LIST

BF
SF

EXAMPLE:

SNAP

DEFAULT

$OUT
(8(3X,08))
(8(3X,08))
(4025)
(4025)
(4025)
VL

SNAP
SNAP
SNAP
SNAP

(LIST),UNIT=...,AF=,BF=;SF=TF=,VF=,VL=

List of registers to be snapped.
Output unit.

Format of A registers.

Format of B registers.

Format of S registers.

Format of T registers.

Format of V registers.

.V register elements to be snapped.

(A,S)
(T),TF=(3F20.10)
(VL),VL=20
(B10-B20)

412 . SWCE1CALSNAP 11/85 -

)

THIS IS AN ADD OF OP1 & OP2

O### Snap (A,B,S) at 0000206b;

0A0 through A7:

77777066 00000005
0BO through B77:
00001020 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

0S80 through S7:

0000200000000000000000
1040000000000000057065

RESULT =

1

THAT WAS THE RESULT

00000006

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00051230

0000200000000000000000
0000000000000000000000

BO

00002044

00000013

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00057066

00000000
00000000
00000000
000000060
00000000
00000000
00000000
00000000

4.13

00060000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0000000000000000057065
1000000000000000000000

00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
77777066

0000000000000100057066
0000000000000000000000

DUMP MACRO

Dump contents of memory.

All registers are saved and restored.

LOCATION | RESULT OPERAND

DUMP (LIST),UNIT=...

LIST List of memory ranges.

F..L (dumps from first word address to last word address)

FN) (dumps N words starting at first word address)

F (dumps the first word)

UNIT Output unit. Defaultis $OUT.
EXAMPLE:

X CON

Y DATA

A BSS

DUMP X..Y+1)
DUMP (X(10),Y(20))

DUMP (X..Y,A)

DUMP (R.A2.R.A5)

DUMP (@R.A6(100))

4.14

Dumps contents of X through
Y plus one word.

Dumps the first 10 words of both
Xand Y.

Dumps contents of X to first
word in Y, plus the contents of
A.

Dumps from the address stored
in A2 to the address stored in
AS.

Dumps 100 words starting with
the address pointed to by the
contents of A6.

SWCEICALDUMP 11585

()

1nos

JHL SVM LVH1

LdO 40 Qav. NV S|

®
&
Axw;x
(@°
(

[

q:L0%LL

4

SIHL
?)
® (N
®
q
?
[s 2)
[@ >«
) %S
) 0
S)
89G:L0tLLhg/02/
18/02/€0
HL'X S0D @
Yy 1 p q:

®

(

®

YL

¢

L7ns3
2do %

[4

Z XY
o

H-
‘ ® |
ory @0 4

€0

)

>

v20sin

qg:

0000000000000000000000
0000000000000000000000
0000000000025 e4eLLLeeO
2cl0eele0LLeq00LE2S0h0
ohhoeoheLLLOZhLZLLLOCO
2000000000000000000000
0020241900000€0H450€000
00L026L600000€0464L2000
0090L€1L90000Hehth0E000
0090¢€€.50000t2hsh L2000
002021922¢€ 119092100000
LO9h2064€E€E00HENDSE0Q0
LO912002hG000HEQ9HEQ00
00L9LLLI00000EOLLIZ000
06910000914 L09000000LL
7996410091L011100009020
00000000000006000000000
0000000000000000000000
0Ltgeh9LLO00EHILLINOED

0000000000000000000000
0000000000000000000000
000000000000000000t1LEO
0000000000000000000000
9t 1L 1G000000LLLLOSLOOOO

0000000000000000000000
0000000000000000000000

0000000000000000000000
0000000000000000000000
0/r002001L0t100200L01T100<C0
L2102062101L7h04520R70020
hOL2he0e0h0Lhe0eohliL G0
4000000000000000000000
004001 1L300000205€0£000
006021 L4600000206¢€.2000
00t0LL090000KLTie0€000
00h0€.9450000%LHSLECLOO
001L22129.h04£1000020¢€ L
009022L9t10LEL 00002020
009020£40000H00617L0520
00L02e69¢00001L0L00REEO
000h290hE00000HTI0HEOO
G0£222£4000001L0L0L2000
OLh2eER9LLI00ERILLINOED
0000000000000000000000
H90HEFELOIOLEIELESGOOED

0000000000000000000000
0000000000000000000000
0t700200L0t002001L0h0020
0h00200L0%00200L0H0020
LLLOZ9heLLLHh0620/0020
000000000L00000000001T0
00£0040900000L0KL0OE000
00€02¢0K1L502645€£2000L00
0020L€£0900001h0%100€000
000L1Leh0ehsL1L500000LL0
£0£000091L29L091L0000%00
04200002€00220LL01L094%20
000.00L0000002L%€00000
00£220L0L00C0LLOEOSLOO
1162000090226 LhL€42000
00L00L000L0OK%00000000K0
h90HEIELOIOLEIELEJOOED
0000000000000000000000
0000000000000000000000

awes
06000000000000000000000 0000000000000000000000
2000000000000000000000 0000000000000020000000
6000000000000000000000 00000000000000000000600
HOhOEhELOELOZINZLLGLHO 000000000069000L0GHTLL
0021500000025000200000 0002900040LSGE0000009¢E0
aues
0000000000000000000000 00000000000600000000000
0001000000000000000000 0000000000000000£00000

4.15

1n83y IHL SYM LvHL

LL

0000000000000000000000
04///.1./00000000000000
0t00200L1igL9hes2Eeesaeho
0%0020012900469¢€20h0€20
£100000000000000000000
L19€09190000t1€0he,2000
00L001L090000000K1.L2000
LG£0000%L100041290E£000
0000LLLS0000hEHS9L2000
0461L3609%2¢1L01L1L92L0L000
€1000000004€£€10000L0HO
0€0920009LHE91L00009020
00€91L50000000LLH1L0O0000
00000L00¢4%L0900000001L
002004250000100%1L09420
2LLLG96500001002202¢h0
0000000000000000000000
00000000000600000000000
0000000000000000000000

0000000000000000000000
0000000000000000000000
0000000000000000000000
060000000000000001L00000
000002022900¢24L 197240

0000000000000000000000
000000001015€£000000000

= 1Ins3y

‘112000
10,2000
+1192000
+092000
1162000
$062000
+htc000
+0t2000
‘1€2000
$0¢£2000
1122000
+022000
+1112000
*01<2000
$t102000
$002000
‘L1000
{0LL000
‘h9L000

:021000
‘f1L1L000
*01L1000
701000
+001000

00000
:000000

111200000 Ubnodylr 00000000 ‘AJouaw Jasf

99020000 2e (00€,0°'°0,0) BUIdUNQ xux0
240 ® 140 40 QQv NV S|

SIHL

OPEN MACRO

Prepares a dataset for processing.

Makes a DNT entry.

&

Creates a DSP and LFT and an I/O buffer at high end of a job's memory if needed.

OPEN generates a two-word Open Dataset Name Table (ODN) the first time the macro is

encountered.

LOCATION

RESULT

OPERAND

OPEN

DN - Dataset name.

PD - Processing direction:

DN,PD

T if dataset opened for input.
O if dataset opened for output.

CLOSE MACRO

Terminates I/O processing on a dataset.

Writes Record Control Words (RCWs).

Flushes buffers if:

It is opened for output.

No end of data written.
Sequential.

Block dataset.
Not memory resident.

1.
2.
3.
4. DSP managed by COS.
5.
6.

Releases buffer, LFT, and DSP table area.

Updates DNT.

LOCATION

RESULT

OPERAND

CLOSE

DN - Dataset name.

DN

4,16 SWCE1ICALO&C

11/85

)

User Job Area

User BA

Job Table Area

DNT

e

Job Communication Block

200

jl word 66 & 67

User Program Area

Open Dataset Name Table
VZZ 777 73—

h 4

Logical File Tables

r7777777¢

h 4

Dataset Parameter Tables

7k

A

10 Data Buffers

P N

/ ’La’c’AL' '

AL

-----/-/-/-/-—-
DATASET
Lo s sz /////{

User LA-1

4.17

WRITE MACROS

LOCATION | RESULT OPERAND COMMENT

WRITE DN,UDA,CT WRITE WORDS

WRITEP DN,UDA,CT WRITE WORDS PARTIAL
WRITEC DN,UDACT WRITE CHARACTERS
WRITECP | DN,UDA,CT WRITE CHARACTER PARTIAL

On partial writes an EOR is not written.
DN - Dataset name.
UDA - FWA of user data area or A,B, or S register (not Al) containing FWA.

CT - Word or character count or A,B, or S register (not Al or A2) containing count.

Return conditions:
Al - DSP address.
A2 - FWA of user data area.

A3 - Requested word or character count.

4.18 ' SWCE1CALWRITE 11/85

()

Asynchronous I/g Synchronous I/0O
user
CFT BUFFERED 1/9 CFT FORMATTED/ interface
STATEMENTS UNFORMATTED STATEMENTS
BUFFER IN READ "~ PUNCH
BUFFER 0QUT . PRINT WRITE | CAL BLOCKED I/0 MACROS

READ WRITE WRITEF

READP WRITEP WRITED
CAL BUFFERED READC WRITEC BKSP
1/0 MACROS CAL UNBLOCKED READCP WRITECP BKSPE
BUFIN BUFOUT BUFEOF 170 MACROS ' GETPOS
BUFINP BUFOUTP BUFEQD READU SETPOS
BUF CHECK ' WRITEU REWIND

Y Y library

routines

BUFFERED I/0 $RFI JWFI 3JRUI $WUI

JRFA SWFA IRUA $WUA

$RB JRFV SWFV JRUV SWUV

JWB . SRFF SWFF S$RUF SWUF

N Y
CAL BUFFERED 1/0
INTERFACE
$CB10 ¢' | Y

UNBLOCKED DATASETS LOGICAL RECORD /0

SRWOR SWWOR SWEQF 3GPOS
JRLB) JRWDP SWWDP $WEOD 3SPOS
JWLB $SRCHR PWCHR FREWD

SRCHP JWCHP $BKSP
$WWDS §BKSPF

system
' calls
F$BIO FIRDC
' FSWOC
USER
+ Y SYSTEM
T10 €10
JRWOR $WWOR SWEOF RDCS
$RWOP SWWOP 3JWEOD ' »> Wocs
JWWDS SREWD . CI0S

4.19

READ MACROS

LOCATION| RESULT OPERAND COMMENT

READ DN,UDA,CT READ WORDS

READP DN,UDA,CT READ WORDS PARTTAL
READC DN,UDA,CT READ CHARACTERS
READCP DN,UDA,CT READ CHARACTER PARTIAL

On partial reads the dataset is positioned after the last word or character read. Otherwise the
dataset is positioned after the EOR.

DN - Dataset name.

UDA - FWA of user data area or A,B, or S register (not Al) containing FWA.

CT - Word or character count or A,B, or S register (not Al or A2) containing count.

Return conditions:
Al - DSP address.
A2 - FWA of user data area (UDA).
A3 - Requested word or character count.
A4 - Actual LWA+1 of data transferred (should be A2+A3).
SO - if <0, EOR.
- if =0, null record EOF, EOD.
- if >0, count exhausted before EOR.

S6 - Contents of RCW if S0=0.

4,20 SWCE1CALREAD 11/85

()

*¥23456789 123456789 1234567899 123456789

HERE

LOOP

#*
ENDFILE

#

#
MESSAGE
+#

BUFFER
#

IDENT
START

OPEN
OPEN
WRITE

READ
JSZ
AT
WRITE
J

ELOSE
ENDP
DATA
BSS

END

COPY
HERE

+*

INDATA

SouT

SOUT,MESSAGE, 4 WRITE HEADER MESSAGE
* .

INDATA, BUFFER, 10 READ A REGORD
ENDFILE S=0 |F END

Al-A2 NUMBER OF WORDS READ
SOUT, BUFFER, A7 WRITE REGORD

LOOP

+#

INDATA

"1 THIS IS A LIST OF INDATA !
12 . _ READ/WRITE BUFFER

4.21

FORTRAN-LIKE O MACROS

LOCATION{ RESULT OPERANDS
FREAD FMT,(LIST),SV=...,UNIT=... ERR=....END-=...
FWRITE FMT,(LIST),SV=...,UNIT=...
UREAD UNIT,(LIST),SV=...,.ERR=...,.END=...
| UFWRITE ! UNIT,LIST),SV=...
FMT - Address of a format of character string enclosed in double parentheses.

(LIST) - List of addresses.

SV - Save flag (save register contents); default is no.
UNIT - Local dataset name.
ERR - Branch address if error occurs.
END - Branch address if EOF occurs.
EXAMPLE:
A BSS - 20
FMTA DATA '(2F5,3,110)
X BSS 1
Y BSS 1
Z BSS 1
FREAD FMTA,(X,Y,Z)
FWRITE ((15,2F10,2)),(Z,X.,Y),SV
UREAD DATA,(A,10,2))

4.22 SWCE1CALCFT

11/85

)

.

JOB,JIN=U1502A.
ACCOUNT,AC=265124,US=TNG,UPW=TNG.

EXKEIEAALA KKK AKERRAARAA XA R RA R AR AT Ahhhkhhrdkhkdhhkhhdhhkhkhkhhkdrhkhikhkkkrkhhxhr ks

*

* THIS J0B ADDS TWO NUMBERS AND WRITES THE RESULT TO $0UT

x

EXEKXKKKKXREKXKKRK AR AKX KX Nk K hkkdkkhkkkkhhhhkkhhkkhkkkkkhkhhkhkkkkhkkkkkhkkihkdthiik

CAL.
LDR,MAP=0N.
/EQF

IDENT

START
*
HERE =

OPEN

WRITE
*

Al

A2

A3

SNAP

RESULT,O

DUMP
*

FWRITE

WRITE

CLOSE
*

ENDP
*
0P1 CON
0pP2 CON
RESULT BSS
MSG1 DATA
MSG2 DATA
*

END
/EQF

FWRITE
HERE

*

$OUT
$0UT,MSG1,5 WRITE HEADER MESSAGE

0P1,0
0pP2,0

AT+A2

(A)

A3-
(0'200..0"300)

(" RESULT = ''I8)), (RESULT)
30UT,MS62,5 WRITE TRAILER
$0UT

- oo

THIS IS AN ADD OF OP1 & 0P2)
THAT WAS THE RESULT '

4.23

COS RELOCATABLE LOADER

The COS relocatable loader is a utility program that executes within the user field and
provides the loading and linking in memory of relocatable modules from datasets on mass
storage.

The relocatable loader is called through the LDR control statement when a user requires the
loading of a program in relocatable format. Absolute load modules can also be loaded.

LDR CONTROL STATEMENT
Format:

LDR,DN=dn,LIB=1dn,NOLIB=ldn,LLD,AB=adn,MAP=op,
SID='string', T=tra, NX,DEB=],C=com,0VL=dir,CNS,
NA,USA,L=1dn,SET=val,E=n,I=sdir, NOECHO,NORED,

LOADER LINKAGE PSEUDOS
Linking object program modules into a single executable program module.
MODULE - Defines contents of module type field.

ENTRY - - Specifies symbols, defines as addresses or values, so they can be used by
other program modules linked by the loader. '

EXT - Speciﬁes linkage to subroutines defined as entry symbols in other program
modules.

START - Specifies symbolic address where execution begins.

NEWSEQ - Notifies loader of the use of new CFT calling sequence.

STACK - Notifies loader that stack structure is in effect.

424 SWCEICALLDR 11/85

()

Binary
Load
Module

$BLD

$SYSLIB : $ARLIB

$IOLIB : — $SCILIB

$UTLIB /

$FTLIB

Absolute Symbal Loader
Binary Table Map
. $ABD $ABD $ouT

4.25

RELOCATABLE LOADER EXAIVIPIES

Example 1 - LDR.
LDR.

The simplest form. All parameters are defaulted.

Example 2 - DN.
LDR,DN=DONPROG.

The program module will be loaded from dataset DONPROG. Other parameters are

defaulted.

Example 3 - LIB.
LDR,DN=DONFROG,LIB=DONSLIB.
The loader will search dataset DONSLIB in addition to the system default libraries
($FTLIB,$SCILIB, etc.) for the loading and linking of externals.
Example 4 - NOLIB.
LDR,DN=DONPROG,LIB=DONSLIB,NOLIB=$SCILIB.
The loader will exclude dataset $SCILIB in its search for loading and linking
externals.
Example 5 - LLD.
LDR,DN=DONPROG,LIB=DONSLIB,NOLIB=$SCILIB,LLD.
Any libraries that are possibly accessed during this load

($FI'LIB $SYSLIB,DONSLIB, etc.) are not released following the load. “This
means the buffer area(s), DNT(S), etc remain in the program area.

426 SWCEICALLDR 11/85

()

OBJECT BINARY VS EXECUTABLE BINARY

$IN
F(;RTRAN CET
ource

Al N CAL Object Binary | Executable
Source , Binary

$BLD $ABD

» LDR —

BUILD $0BL BiﬂﬂfY

A 4

Libraries

4.27

Example 6 - AB.

LDR,DN=DONPROG,LIB=DONSLIB,NOLIB=$SCILIB,LLD,
AB=DONS.

The loader will construct a memory image (all externals linked) of the program
DONPROG on dataset DONS. DONS could then be made permanent on the Cray
and executed at a later time by simply using the dataset name, as in:

JOB,JN=NOW.
ACCESS,DN=DONS.
DONS.

EXIT.

Basically, CFT, LDR, CAL, etc. are constructed in the same manner.

Example 7 - MAP.
...LLD,AB=DONS,MAP=0N.

A map of the loaded program is produced on $OUT. Refer to SR-0011 for a LOAD
MAP example.

Example 8 - NX.
..MAP=0N,SID,T=HERE,NX.

When NX is used there is no execution of the loaded program. However, all
externals will be loaded to ensure a complete program as in:

JOB,IN=NOW.

CFT.
LDR,AB=DONS,NX.
SAVE,DN=DONS.
EXIT.

This program creates and saves object program TDONS' with all the linkages to
subroutines and externals, but does not execute the program.

428 SWCEICALLDR 11/85

")

LOADER MAP

RELOCATABLE LOAD

LOAD TRANSFER IS TO HERE AT 2002)
DATASET BLOCK ADDRESS LENGTH DATE 0S8 REV PROCSSR VER. COMMENT
*SYSTEM 0 200
SBLD FWRITE 200 124 06/14/84 COS 1.13 CAL 1.13 06/06/84
SIOLIB $cDCo 324 4oL 06/06/84 COS X.14 CAL 1.13 06/06/8l4
S1BMO 730 337 06/06/84 COS X.14 CAL 1.13 06/06/8L "
S10ERP 1267 1527 06/06/84 COS X.14 CAL 1.13 06/06/8L
SWFD 3016 2027 06/06/84 COS X.14 CAL 1.13 06/06/84
SWUT 5045 1643 06/06/84 COS X.14 CAL 1.13 06/06/84
SUTLIB SBTD 6740 102 06/06/84 COS X.14 CAL 1.13 06/06/8L
SBTO 7100 76 06/06/84 COS X.14 CAL 1.13 06/06/84
SCDCPACK 7176 75 06/06/84° COS X.14 CAL 1.13 06/06/84
SCDCTRAN 7273 777 '06/06/84 COS X.14 CAL 1.13 06/06/8L
SDEALLOC 10272 113 06/06/84 COS X.14 CAL 1.13 06/06/8L4
SIBMPACK 10405 146 06/06/84 COS X.14 CAL 1.13 06/06/84
S1BMTRAN 10553 1023 06/06/84 COS X.14 CAL 1.13 06/06/84
SNCON 11576 173 06/06/84 COS X.14 CAL 1.13 06/06/84
SNOGY 11771 452 06/06/84 COS X.14 CAL 1.13 06/06/84
SSCHED 12403 6217 06/06/84 COS X.14 CAL 1.13 06/06/84
SUTERP 20662 242 06/06/84 COS X.14 CAL 1.33 06/06/84
$SYSLIB SDSNDSP 21124 17 06/06/84 COS X.14 CAL 1.13 06/06/84
GPOS 21143 127 06/06/84 COS X.14 CAL 1.13 06/06/8L
SGTDSP 21272 111 06/06/84 COS X.14 CAL 1.13 06/06/84
SINSASC! 21403 70 06/06/84 COS X.14 CAL 1.13 06/06/84
SPBN 21473 162 06/06/84 COS X.14 CAL 1,13 06/06/84
SPRCW 21655 123 06/06/84 COS X.14 CAL 1.13 06/06/84
SRCW 22000 730 06/06/84 COS X.14 . CAL 1.13 06/06/84
SREWD 22730 157 06/06/84 COS X.14 CAL 1.13 06/06/84
SSLERP 23107 2533 06/06/84 ©OS X.14 CAL 1.13 06/06/84
SSLFT 25642 72 06/06/84 COS X.14 GCAL 1.13 06/06/84
SPOS 25734 401 06/06/84 COS X.14 CAL 1.13 06/06/84
STRBK 26335 1606 06/06/84 COS X.14 CAL 1.13 06/06/8L
TRBKLVLY 30143 57 06/06/84 COS X.14 GCAL 1.13 06/06/84
SUEOFTCL 30222 13 06/06/84 COS X.14 CAL 1.13 06/06/84
SWCH 30235 340 06/06/84 COS X.14 CAL 1.13 06/06/84
SWRTUTIL 30575 346 06/06/84 COS X.14 CAL 1.13 06/06/84
SWWD 31143 600 06/06/84 COS X.14 CAL 1.13 06/06/84
SARLIB SARERP 31743 124 06/06/84 - COS X.14 CAL 1.13 06/06/84
SDASS 32100 134 06/06/84 COS X.14 CAL 1.13 06/06/84
SDDSS 32240 63 06/06/84 COS X.14 CAL 1.13 06/06/84
SDMSS 32340 104 06/06/84 COS X.14 CAL 1.13 06/06/84
SLDIVSS 32500 104 06/06/84 COS X.14 CAL 1.13 06/06/84
SFTLIB SUTIL 32604 166 06/06/84 COS X.14 CAL 1.13 06/06/84
BLOCK NAME ENTR!ES ENTRY VALUE ABSOLUTE REFERENCES
FWRITE HERE 200a
$cpeo $CDCO 3623 5616d
S1BMO S1BMO 767a 5607d .)
SIOERP IOERPY - 1366a 3757d 4366b 5173d 6663a
NLERPY, 1432a :
SWFD SWF | 3613a 212¢

##% | OAD IMAGE STATISTICS ##%
ABSOLUTE BINARY LENGTH: 13818(10), 32772(8) WORDS
) LWA =

PROGRAM [IMAGE: FWA = 200(8 33172(8)
THIS |S AN ADD OF OP1 & OP2 -
RESULT = 11 ’ :

THAT WAS THE RESULT

4.29

()

‘CAL PROGRAMMING QUIZ

—

- How is a source dataset represented and is it blocked or unblocked?

2. Name 6 binary libraries and a routine in each library?

3. What is the main purpose of the loader?

4. How and when is a loader map used?

5. Where do local datasets reside?

6. What CAL staitement will dump a job's memov and format it to $OUT?
7. Explain why you would use a niacro?

8. What's the difference between a sourFe listing and an assembly listing?
9. Where do you look to find a symbol's value?

10. What loader command parameter prevents execution of the object program?

431 ‘ . SWCEIQZ 10/85

()

()

()

Program Libraries and UPDATE

()

()

MODULE OBIJECTIVES
Upon completion of the Program Library Module, and with the aid of all furnished refefence
material, the learner should be able to:
1. Create a diagnostic program library
2. Modify a diagnostic program library
3. List the decks of a diagnostic program library

4. Create a binary library

5.1 SWCEIPLMO 11/85

LIBRARIES
Procedure Library

Created by the JCL PROC definition
. Library statement makes the PROC available
Defined JCL stream call

Program Libi'ary

Created and maintained by UPDATE
Program source code
Composed of decks

System has 25 common libraries

Object Library

Created and maintained by BUILD
Binary program file and directory file
System has 6 common libraries

Described by itemized statement

59

SWCELLIB

11/85

")

()

AUDIT
POH

SAPTEXT
$DBHELP
$I0LIB

$SCILIB®

$SYSLIB
$UTLIE
ACCOUNT
ADSTAPE
ARLIBPL
AUDPL .
BIND
CAL

CFT
CHARGES
COPYD
COPYR
COSPL
CSIM
DEBUG
DUMP
FDUMP
FTREF
I0LIBPL
ITEMIZE
LDR
MODSEQ
PASCAL
PDSDUMP
PRVDEF
SEGLDR
SETOWH
SKIPD
SKIPR

- SKOL
SKOLREF
SPAWMN
STEP
SYSREF
TEDIPL
UrB
UPDPL
UTLIBPL

84 DATASETS,

CoS 1.14

10

Y114BF1L
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V1148F1
V114BF1
V114BF1
V114BF1
Y114BF1
Y114BF1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
V1148F1
Y114BF1
V114BF1
Y114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1

ED

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

17164 BLOCKS,

5.3

PDN

$ARLIB
$FTLIB
$PSCLIB
$SID
$SYSTXT
SUTLTXT
ACCTDEF
APHML
AUDIT
AUTODIR
BUILD
CALPL
CETPL
COMPARE
COPYF
copPYU
COSTXT
CSIHMPL
DSDUMP
EXTRACT
FLODUMP
GENPL
I0PPL
JCSDEF
LDRPL
MODSET
PASCLPL
PDSLOAD
SCILBPL
SEGRLS
SIDPL
SKIPF
SKIPU
SKOLPL
SKOLTXT
STATS
SYSLBPL
TEDI
TOOLPL
UPDATE
UTILPL
HWRITEDS

ID

V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
V114BF1
Y114BF1
Y114B8F1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V114BF1
V1148F1
V114BF1
V114BF1
V114BF1
V114BF1

8787968 WORDS

UPDATE UTILITY

The UPDATE utility is a Cray utility that provides the user with a method of maintaining source
programs on datasets called program libraries (PL's) rather than on punched cards.

It allows the user to CREATE, MODIFY, EDIT, and UPDATE source language programs on the
Cray.

A program library (PL) consists of specially formatted image decks, each separated by an EOF
record. ‘ '

There are two deck types - regular and common.
A regular deck is sequentially placed in the PL and remains in only one location.

A common deck is sequentially placed in the PL but can be called in other locations of the PL
(similar to a macro in assembly language or a statement function in FORTRAN).

PL's are used in the generation and modification of the Cray operating system - COSPL, IOPPL,
and GENPL.

PL's used in the generation and modification of Cray diagnostics are CRAYPL, XMPPL, DOCPL,
I0PPL, C200PL, X200PL, and I200PL.

()

54 . SWCEIUU . 11/85

Hodification
set identifier r

[*ID id

Modification se

| *DECK or COMDECK
‘*DECK or COMDECK

*COMDECK cdn

*COMDECK ed

oy

*COMDECK cd]

Common
decks

(Decks may contain embedded directives)

Typical source deck input sequence

5.5

UPDATE STATEMENT
UPDATE isa prb gram library line editor.

UPDATE,P=pdn,I=idn,C=cdn,N=ndn,L=ldn,E=end,S=sdn,DW=dw,
DC=dc,*=m,l=c,Q=dk:dk,F,NA,NR,IN,ID,ED,CD.

Examples:
Creation of a PL.

UPDATE,I=SOURCE:SOURCE1,P=0,N=LIBRARY.

Modify a deck in a PL
UPDATE,P=PLDPL ,N=NEWPL,ID.

Compile a deck in a PL
UPDATE,P=LIBRARY,I=0,Q=*ARA..Z.

5.6 SWCELUS

11/85

()

$IN $PL

Directives Program Library. -

UPDATE

Compile Dataset New Program Library
$CPL $NPL

5.7

UPDATE DIRECTIVES

Update directives include:
Commands to modify common decks
Commands to modify program decks
Commands to compile a deck

Commands to maintain a deck

The directives default dataset is $IIN.

UPDATE DIRECTIVES

BEFORE Insert before a card number
CALL Call a common deck
COMDECK Insert a common deck
COMPILE Compile a deck

CWEQOF Conditional WEQOF

DECK Insert a new deck
DECLARE Declare a deck for
DELETE Deactivate cards

EDIT Remove iactive cards
IDENT Modification ID

INSERT Insert after a card number
LIST Resume listing to E dataset
NOLIST Stop listing to E dataset
MOVEDK Move deck

PURGEDK Remove deck

READ Read alternate input

SEQ ‘Write sequence numbers
NOSEQ Stop writing sequence numbers
WEOF WEQOF on a compile dataset
YANK Deactivates a deck
UNYANK Reactivates a deck

5.8

SWCE1UD

11/85

)

copy

Oa
id
3c

6a
10c

Oa+
<macro>
<macro>
nacro>

<macro>
031742
macro>
13+
acro>
014 000000173+
031742
006 000000130+

17a+
<macro>

<macro>
<macro>
0304401005211022251440
0445231004044023044523
0520402364304022247104
0405242022004010020040

14

HERE

LooP

*

- ENDFILE

*
*

*

HESSAGE

*
BUFFER
*

IDENT
START

OPEN
OPEH
WRITE
READ
A7
WRITE
READ
JSZ

A7
J

WRITE
CLOSE
EHDP

0ATA

BSS
EHD

CRAY NP CAL X.15(01/25/85) 01/29/85 17:11:28 Page 1
(1)

coPY
HERE
*

INDATA

$OUT
$0UT,MESSAGE, 4
INDATA,BUFFER,10
A4-A2

$0UT, BUFFER,A7

3

1MDATA,BUFFER,10
ENDFILE

A4-A2

LoopP

*

$0UT, BUFFER,A7

THDATA

VRITE HEADER HESSAGE
READ FIRST RECORD
WRITE FIRST RECORD
READ A RECORD

S=0 IF END
HUMBER OF WORDS READ

11 THIS IS A LIST OF INDATA !

12

5.9

READ/VRLTE BUFFER

CoPY.2
corY.3
CoPY.4
COPY.5
COPY.6
COPY.7
corY.8
CHANGESZ.1
CHANGES2.2
CHANGES2.3
coryY.e
COPY.10
COPY.11
copy.12
CoPY.14
COPY.15
COPY.16
CHANGESZ.4
COoPY.17
copPY.18
copPY.19
copY. 20
copy.2l
copY.22

copY.23
COPY.24
€oPY.25
COoPY.26

U1502A UPDATE X.13 84pL<3 03/15/84 11:29:59 PAGE
HHH ucmzq_m_ﬁw Y IN PROGRAM LIBRARY CRAYPL ### A\ PLDATE 03/15/84 LASTID MENUS
/

#HMTES #HADRTC *CAET #BET *BTDMP #CHE #CHR *DDRO *DDR1 #CHT
®EST *EXD HEXJ *FPE *JBK #MCR HMM *MPC *MSLR HMVWR
*#pG | #pPpP #RTC #SCAT *SR3 #TD10 *TD 11 *TDI3 *TDM *TDMP
*TPM #VCH *ycp *VDMP *MSEC *RUN *MIT #CIT #CSSCI1 #1BR
#CMD *DKSE *DSKZ #DKRX #DSKR #ADRT #MSL8 *RUNS *PAD | *PADO
#TMX8 *CCM *CC1 *7Z HWW *INFC *CT *MSL *ACE370 #DX9
*BTDMPS #YDMPS *TD10S #TDI13S *TDI1S #TD12S #*IRUN *1BPOS *18P1S #|BP2S
#TDMS #CMST *A130 *1RUNS *HDKSEC ##DSKZC #HDKRXC HHDAMLC *DBTR #DBRR
#DFC #HDFLWC #H#DFCC ##DBTRC *BEU #SR10 *CHNS #CHUY *FCS #FCU

AC0163A ACO176A ACO177A AC0198A BC201A BI5127A BC5112A BC5112B BC5112C BC5112D
BCO176A BC5137A BC5134C BC5112F BC5112G BC5112H BC51121 BC5112J BC5112K BC5112L
BCS112N BC51U47A BCS14LA BC5148A BC5150A BC51508B BC5150C BC5150D BC5150E BC5153A
BC5161A BC5150F BC5150G BC5150H BC51501 BCO217A BC5170A BC5171A BC217B HHTEST

*¥GRN #MIX *BLA *STAN *AMT *ARA *ARB *ARBA *AR| *ARM
*BRB #BTRT #BTV #CBG *CLEAR *FUTA *IFT *JAB *JCB #SFA
#SFR *S18 *#SMU *SR1 #SR2 *SRA *SRB #SRBA #SRL *#SRS
®TLT *TRB HVLT *VPT *VRR *VRS *VRB *VRL *YRN #SRR
*VPOP *VRA *BJK *¥YCTST *AHT #SAR #SCN #1BP1 *|BpP2 #|BP3
¥BIT *1BPO *AMTA HHMT | #EMTD HMTAS *MT IS HMTDS HHRUNIT #*DDCOMM
#DDTEST ¥DELAY HERRINF *ICVTOS *TESTSW HSETBIT *DATACHK #BREAKER *SORT *FLAC

*EMTIO HEMTEE #EITA HHPT| *HITI0 #H | TEE *)TAS *ITIS *ITEES #MTEES
*1TI10S HHGHUHXK #S101K #S104K #3102K *5202K #5201K *#3204K HHOMT | #TMXS
#CSSD ¥ASSD *ASSDL #HMSGO #EMSGT *HMNSG2 HEMSG3 *EMSGY ##GLOBS #¥PARAMS

*EMTS *MTSS #CST *BASE HETHT *QU I CK1 *#COMP1 #QUIKTE #COMP1E ®ETHIE
*M102M #M202M *M204M BC5172A BC0217C BC5175A BC0201B BC5182A BC51828B BC5241A

BC217D DCO283A BC189A DC1082A C10294A DCO281A DCO323A DCO323B DC0323C ECO188A
EC0683A ECO148A ECO334A EC0683 EC0339A ECO341A ECO343A ECKBOG1 ECO34lA ECO346A
EJBOO6 EJBOO7 EJBOOS8 ECOBLAA EJBOO9 EJBO11 EJBOI2 EJBO13 EJBO1Y EJBO15
EJBO17 ECKB0OO2 ECKB0OO3 ECOGAPA EJBO18 EC0352A EC0352B #SORTC EC0353A ECO351A
ECO350A ECO3U9A ECKB005 ECKBOOY ECKBOO6 ECKB0OO7 EJB0OO15 ECO360A £JBOO16 EJBOO1 8
#1BR1 *1BR3 *{BR2 *1BRO *#1BRX *DELY *MENUS
W 200 DECKS 34 COMMON DECKS 103 CORRECTION SET IDENTIFIERS

.

1 A ,v
#EDB
*MVX
HTMX
#SSFR
#TD12
HEXDS .
#|BP3S
HDFLW
#SECD

BC5112E
BC5112M
BC5154A

HHQTA
¥BATS
*SFM
#SVC
*ADD
*LADDER

#HDDSFNS
HOFLW
*MT10S
#DISK

*HMTRCOMS
*M101M

BC525UA
EC0291A
EJBOO5S
EJBO16

*BREAKERC

ECKBOO8

5.10

PROGRANM FLOW

5.11

SWCE1PF

$NPL.
$IN PL
Mods
PL. PDATE $OUT
PL ——»| Listing
$IN
Source
> $BLD +—» LDR (» SABD
3
$PL Source
PL $CPL
T
e PDATE
Listing
Mods $NPL \
Binary
PL BUILD [Libraries

11/85

BUILD UTILITY

The BUILD utility is a Cray utility that provides the user with a method of maintaining object
programs (modules) on datasets called library datasets.

BUILD allows the user to CREATE, MODIFY, and LIST object language programs on the Cray.

A library dataset consists of two files:
File one contains the program modules.

File two contains a directory that allows the loader to rapidly locate and access the program
modules.

(See the SM-0045 publication for a breakdown of tables involved with the loader.

5.12 SWCEIBU 11/85

e

Binary Library

Program Module

EOR

Program Module

EOR

Program Module

EOR
EOF

Library Directory

EOR
EOF
EOD

5.13

10.

11
12.

13.

BUILD EXAMPLE 1
The JOB card is the first statement in the JCL file.
The next statement compiles the first file of $IN. -

The ACCESS statement renames the permanent dataset NLIB to the local dataset name
OLIB and has the system copy the DSC information into the user JTA.

The next statement is BUILD. Its parameters are broken down as follows:

OBL=0OLIB, Input for the old library.

NBL=NEWLIB, The new library name. This dataset will be used as the
IBK dataset for the next modification run.

SORT, The modules will be listed alphabetically.

The BUILD utility operates on the second file in $IN and searches for a directive.

The FROM QOLIB' directive causes BUILD to search dataset OLIB for the module named
in the next directive.

The 'COPY ASUB' directive causes BUILD to select the specified module from the input
dataset (OLIB) and copy it to the output dataset (NEWLIB).

The FROM $BLD.COPY BSUB!' directive is actually two directives on one line. Periods
or semicolons separate directives on the same line.

The first directive on the line FROM $BLD' causes BUILD to search dataset $BLD for
modules named in following directives. Remember the preceeding FROM used OLIB ~~
(item 6 above). ,

The second directive on the line 'COPY BSUB' causes BUILD to select the specified
module from the input dataset ($BLD) and copy it to the output dataset NEWLIB).

BUILD reads the /EOF and terminates.

The next statement deletes dataset OLIB since there is no further use for it. Two editions
are not needed.

The next statement makes NEWLIB permanent on the Cray under the new name NLIB.

BUILD EXAMPLE 2
The new version of dataset NLIB (from BUILD example 1 above) is accessed before
invoking LDR so the library is local to the job. NLIB could have been entered in the SDR
to avoid accessing NLIB each time it is used.

The CAL statement assembles the program in file four of $IN and has the object code
written to $BLD.

The program makes calls to subroutines ASUB and BSUB. Do you know where they are?

The next statement is TDR,LLIB=NLIB' which names the previous BUILD library dataset —~
(NLIB) as the library to search for unsatisfied externals and then execute the program.

~\/’v

5.14 SWCE1BE 11/85

BUILD PROGRAM EXAMPLE 1

JOB,IN=BUILDI1.

CFT.

ACCESS,DN=0LIB,PDN=NLIB,UQ.
BUILD,OBL=0OLIB,NBL=NEWLIB,SORT.
DELETE,DN=OLIB.
SAVE,DN=NEWLIB,PDN=NLIB.

EXIT.

/EOF
SUBROUTINE BSUB(D)
PRINT 10, T*I

10 FORMAT (***THIS IS I SQUARED***' I5)
END

/EOF

FROM OLIB

COPY ASUB

FROM $BLD.COPY BSUB

/EOF |

BUILD PROGRAM EXAMPIE 2

JOB,IN=BUILD2.
ACCESS,DN=NLIB. -

CAL.

LDR,LIB=NLIB.

EXIT.

/EOF
IDENT DON
START HERE

HERE = * .
CALL ASUB,(DATA)
CALL BSUB,(DATA)
ENDP
CON
DATA 10
END

/EOF

5.15 SWCE1BE1&2 11/85

()

—

10.

PROGRAM LIBRARY QUIZ

. What is the advantage of object libraries?

What is contained in a program library?

What utility maintains program libraries (such as inserting, deleting, and
modifying decks)?

What statement parameter lists the decks of a PL?

What is the advantage of using UPDATE and a PL?

Write the necessary JCL statements to get a listing of program library ARA.
What maintains an object library by inserting and deleting modules?

Name three default datasets of UPDATE.

Name the two types of decks in a program library.

What are the UPDATE commands called and where in the program are they
located?

517 SWCELIQ5 11/85

)

()

Programming Exercises

6

()

Exercise 1 Terminal Orientation and JCL

Skill: Program In Job Control Language using the front-end editor

Task: Write a batch job that accesses and copies the permanent dataset
SWCE1 with an ID=TNGSWCE and R=TNG to $OUT. Read what the
Text dataset says.

NOTE: Start naming your programs logically, such as EX1 for this -
exercise, EX2 for Exercise 2, efc.

Resources:
SWCE Workbook
SR-0011
SPF Editor Reference Materials
User ID and ACCOUNT information
Terminal and station logged on to a Cray
Tools: ACCESS, COPYD.
Related Reading:

SR-0011 page 9-5
page 12-1

Intended Lesson Results: To know how to use the front-end editor to .
write, submit and view the output of a Cray
Batch Job.

6.1 SWCE1EX1-7 11-85

()

Exercise 2 Permanent Datasets

~ Skill: Save, Access and Audit permanent datasets
Tasks: NOTE: Write each of these parts to Exercise 2 as separate
programs. Use the name of the exercise part as the program
name.

EX2A. Write a batch job that copies $IN to a local dataset and saves
that local dataset with your ID=TNG___. Make at least 10
records in $IN.

EX2B. Write a second batch job to audit the dataset catalog with
your ID and verify which disk drive the dataset is on.

EX2C. Write a batch job that accesses your permanent dataset and
copies to $OUT and verify it is your dataset.

Resources:
~ SWCE Workbook
SR-0011
Station Terminal
SPF Editor reference material

Tools: COPYD, SAVE, ACCESS, AUDIT
Related Reading:
SR-0011 page 9-1
page 9-5
page 11-8
page 12-2

Intended Lesson Results: To be able to create, locate and access a
permanent dataset on Cray mass storage.

6.3 SWCE1EX1-7 11-85

)

Exercise 3 Local Datasets

Skill: Manipulate COS local Datasets
Tasks:

EX3A. Write a batch job that copies the three input files listed
below to a new local dataset called NUMBERS. Then copy
individual records from NUMBERS to $OUT in the following
order: ' _

All records of file 2
Records 3,4,5 from file 1
The last record of file 3

The job output is to have the records shown in that order.
NOTE: Type the data starting in column 2 or your output will

chop off the first character. File separators (/EQF)
start in column 1, however.

FILE FILE 2 FILE 3
1 11 - 21
2 12 22
3 13 23
4 14 24
5 15 25
6 16 26
7 17 27
8 18 28
9 19 29

10 20 30

EX3B. Add the necessary JCL to your program to dump the local
dataset you are positioning (NUMBERS) in with DSDUMP. This
will be used in class to examine blocked dataset structure.

Intended Lesson Results: To be able to move the dataset pointer in a
local dataset, process individual records
and files of a dataset, and have an
understanding of text and blocked dataset
structure in memory.

6.5 SWCE1EX1-7 11-85

)

cxercise 4 TEDI

Skill: Write a CAL program using TED! and an Interactive Station
Task:

EX4. Using TEDI and an interactive station, write a CAL program to
square a number, modify the source program adding the JCL
to assemble and execute the program. Submit it from the
interactive station.

Resources:

SWCE Workbook
SG-0055
SR-0000

SR-0011
Interactive Station Terminal - VM or Unix or AOS

Tools: CAL, LDR, TEDI

Related Reading:

SR-0011 pages 14-1 to 14-9

SR-0000 pages 2-1to 2-15
page 4-2
page 5-1

SG-0055 pages 1-1to1-5
pages 2-1 to 2-8
pages 3-110 3-5

SWCE1 Workbook ~ Section 3

Intended Lesson Results: To be able to write a program using the Cray
interactive station and the Cray interactive

text editor.

6.7 SWCE1EX1-7 11-85

L)

Exercise 5 CAL Programming

Skill: Program and Read Cray Assembly Language
Tasks:

EXSA. Write a CAL program to add two numbers, Use the DUMPJOB and
DUMP JCL statements to find the answer. Dump the Job Table
Area and words 200 to 300. Also use MAP=ON in the LDR
statement. ‘

EX5R. Use a SNAP macro of the A and S registers to look for the
answer.

EX5C. Use the DUMP macro to examine the user memory area from 200
to 300.

EXsD. Use an FWRITE macro to put the result in SOUT.

Resources:

SWCE Workbook

SR-0000

SR-0012

SR-0011

CAL Card

SPF editor reference material

Related Reading:

SR-0000 Chapter4

pages 13-1 10 13-5
SR-0012 page 2-21

page 2-28

page 2-32

page 3-33

Intended Lesson Results: To be able to write & CAL program that
- gssembles without errors and to use various
output macros to get the results of the CAL
program in $OUT.

6.9 SWCE1EX1-7 11-85

()

Exercise 6 Dataset Staging
Skill: Fetching CAL source programs from a front-end station

Task: The IBM dataset U1502.SWCE.CNTL(COPY) is a CAL source
program. Fetch it from the front end, assemble it and execute
it using the dataset you created in exercise 2. COPY isa CAL
program that copies a local dataset named INDATA to $OUT.

Resources:

SWCE Workbook

SR-0011

SR-0000

SR-0012

Station Terminal

Text field for fetch statement
SPF Editor reference materials

Tools: ACCESS, FETCH, CAL, LDR
Related Reading:
SR-0000 Appendices
SR-0011 page 10-11

SR-0012 page 3-1
page 3-5

Intended Lesson Results: To be able to get datasets to and from a
front-end station's mass storage and
peripheral devices - Tape and Printer.

6.11 SWCE1EX1-7 11-85

()

Exercise 7 Executable Binaries
Skill: Create and use én executable binary program
Task:
EX7A. Access the dataset you created in exercise 2, access the
executable binary dataset COPY with an ID=TNGSWCE and

execute COPY on the local dataset INDATA.
COPY copies INDATA to $OUT.

EX7B. Create an executable binary of COPY using the source program
from the front end and save it with your ID=TNG____

EX7C. Access and execute the binary you just saved with an ID=
on INDATA and verify that it works.

Resources:

SWCE Workbook

SR-0011

SR-0000

Station Terminal

SPF Editor reference material

Tools: AGCCESS, FETCH, CAL LDR
Related Reading:

SR-0011 page 14-4 to 14-5
SR-0000 page 3-1t03-5

Intended Lesson Results: To be able to know the difference between a
source program, an assembler listing, a
binary load module and an executable bmary

6.13 SWCE1EX1-7 11-85

)

Exercise 8 Program Libraries
Skill: Modify a Program Library Deck using UPDATE

Tasks:
EX8A. Compile the deck COPY from COPYPL. COPYPL has an
ID=TNGSWCE. Assemble and execute COPY on your permanent
dataset from exercise 2.

EX8B. Use UPDATE to modify deck COPY of COPYPL to change the
banner message.

EX8C. Use UPDATE to add a trailer message to the end of INDATA.
EX8D. Get the deck IDs from X200PL.

EX8E. Write the JCL necessary to dispose a listing of SRA to the
Calcomp printer.

Resources:

SWCE Workbook

SR-0000

SR-0013:

SR-0000

SR-0012

SR-0011

Station Terminal

SPF Editor reference material

Tools: UPDATE, CAL, LDR, DISPOSE, ACCESS

Related Reading:
SR-0013 pages 1-1to 1-12
page 2-1
page 3-1 to 3-4
page 3-6,3-8,3-10,3-12,3-14
Examples in section 4

Intended Lesson Results:
To be able to get a listing of all decks ina PL
and to be able to use UPDATE directives to
modify and compile a source program from the
program library.
6.15 SWCE1EX8&9 11/85

()

Exercise 9 Diagnostic Generation PROCs
Skill: Write a Procedure for generating a diagnostic listing.

Tasks:

EX9A. Write a batch job that defines and saves a procedure that
will compile a deck from a diagnostic program library and
dispose its listing to the IOP station printer..

EX9B. Write a job that uses the procedure you have saved to dispose
a diagnostic listing to the IOP station printer.

Resources:

SWCE Workbook

CAL Reference card

SR-0011

SR-0000

SR-0013

Terminal and station logged on to the Cray
SPF Editor reference material-

Related Reading:

SR-0011 page 16-21 to 16-29
page 9-5 :
page 10-5
page 14-1

SR-0013 page 2-1
pages 2-4 to 2-6
Chapter 4 UPDATE Examples

SPF Editor reference material

" Intended Lesson Results:

To be able to create your own JCL procedures or interpret a
procedure already written such as from GENPL for diagnostic

generation.
6.17 SWCE1EX8&9 11/85

()

()

APPENDIX A

GLOSSARY

APP. A

SWCE1APP 11/85

AN

)

GLOSSARY OF CRAY TERMINOLOGY

Abort: To terminate a program or job when a condition (hardware or software)
exists from which the program or computer cannot recover.

Absolute address: (1) An address that is permanently assigned by the machine
designator to a storage location. (2) A pattern of characters that identi-
fies a unique storage location without further modification. Synonymous
with machine address.

Activation Record (AR): The element of a TASKSTACK associated with a subrou-
tine call from within the task. An activation block/record contains:
tyraceback addresses and local variable storage locations.

Address: (1) An identification, as represented by a name, label, or number,
for a register, location in storage, or any other data source or destination
such as the location of a station in a communication network. (2) Any part
of an instruction that specifies the location of an operand for the instruc-
tion.

Allocate: To reserve an amount of some resource in a computing system for a
specific purpose (usually refers to a dataz storage medium).

Alphabetic: A character set including, $, %, @, as well as the 26 upper case
letters A through Z.

Alphanumeric: A character-set including all alphabetic characters and the
digits 0 through 9.

Asynchronous: A mode of operation in which performance of operations is not
dependent on the completion of all previous operations. Asynchronous I/0
using Buffer In and Buffer Out instructions allows process to continue with-
out waiting for I1/0 to complete. (The use of Unit and Length functions set
synchronization points thus changing the mode of operation back to synchro-
nous.) The firing up (starting) of a task makes the mode of operation of a
program or job asynchronous since processing will continue without waiting
for the completion of the task. (The use of Events, Locks and TSKWAIT sub-
routines set synchronization points and may thus change mode of operation of
a multitask process back to synchronous.)

Base address: The starting absolute address of the memory field length
assigned to the user's job. This address is maintained in the base address
(BA) register. The base address is set by the system and must be a multiple
of 208. :

Blank common: A common block into which data cannot be stored at load time.
The first declaration need not be the largest. The blank common block is
allocated after all other blocks have been processed.

Blank Common Block: A common block into which data cannot be initialized at
load time. Any number of program modules may declare a blank common block
and each may declare a block of a different size. The loader allocates

storage to the blank common block after all other blocks have been
processed.

$BLD: A dataset on which object language modules are placed by a compiler or
CAL unless the user designates some other dataset.

Block: (1) A tape block is a collection of characters written or read as a
unit. Blocks are separated by an interblock gap and may be from 1 through
1,048,576 bytes. A tape block and a physical record are synonymous on mag-
netic tape. (2) In COS blocked format, a block is a fixed number of contigu-
ous characters preceded by a block control word as the first word of the
block. The internal block size for COS is 512 words (one sector on disk). In
Cray manuals, the terms tape block and 512-word block are consistently used
to distinguish between the two uses.

Block conirol word: A word occurring at the beginning of each block in the
COS blocked format that identifies the sequential position of the block in
the dataset.

BOT: Beginning of tape; the position of the beginning-of-tape reflective
marker.

BOV: Beginning of volume. See BOT.

BPl: Bits per inch. COS supports the 1600 and 6250 bpi recording densities.

Buffer: A storage device used to compensate for the difference in rate of
flow of data, or time of occurrence of events, when transmitting data from
one device to another. It is blocks of memory used by the system to transmit

data from one place to another.

Buffer memory: A 64-bit memory in the I/0 Subsystem common to all I/0 Pro-
cessors.

Busy Wait: A wait state of a process during which the process issues legal
instructions and is apparently doing normal, useful work while waiting for
something to happen. ‘

CAL: Cray Assembler Acronym.

Call: The transfer of control to a specified closed routine.

‘Card Image: A one-to-one representation of the contents of a punched card,
for example, a matrix in which a 1 represents a punch and a O represents the
absence of a punch.

Channel: A path along which signals can be sent.

‘Character: ‘A logical unit composed of bits representing alphabetic, numeric,

and special symbols. COS software processes 8-bit character in the ASCII
character set.

A2

)

Chime: A serjes of pipelined instructions. The execution time for the chime
is dominated by the execution time of first instruction in the sequence.
Overlapping of execution times of subsequent instructions in the chime
diminishes their cost.

COBEGIN: A sequence of independent program segments.

Common block: A block that can be declared by more than one program module
during a load operation. More than one program module can specify data for a
common block but if a conflict occurs, information from later programs is
Joaded over previously loaded information. A program may declare no common
blocks or as many as 125 common blocks. The two types of common blocks are
labeled and blank.

(:ondrﬁonalcontrolstatement block: Defines the conditions under which a
group of control statements are to be processed. The statements which
define the block and conditions are: IF, ELSE, ELSEIF, EXITIF, and ENDIF.

Control statement: The format, consisting of a verb and its parameters, used
to control the operating system and access its products. Directives are
used to control products.

Control statement input file: A dataset containing valid control statements as
its first file.

Counting Semaphore: A mechanism that allows a fixed number of synchroniza-
tion or monitoring actions to be accounted for before the mechanism is
reset. ‘

Critical Region: A part of a sequential program operating on shared data in
such a way that it must have exclusive access to the shared data during its
execution.

$CS: A primary control statement input file.

Dataset: A quantity of information maintained on mass storage by the Cray
Operating System. Each dataset is identified by a symbolic name call a
dataset name. Datasets are of two types: temporary and permanent. A tempo-
rary dataset is available only to the job that created it. A permanent
dataset is available to the system and to other jobs and isimaintained
across system deadstarts. :

Dataset name: A verb that is the name of a dataset.

Deadlock: A state resulting in the inability of processing to continue due
to an unresolvable conflict. Waiting for something to happen that cannot
happen results in a deadlock.

Deadly Embrace: A special case of a deadlock invelving two interactive pro-

cesses. Process A is waiting for process B to do something and process B is
waiting for process A to do something; neither can break its own wait cycle.

A2

Deadstart: The process by which an inactive CRAY is brought up to an opera-
tional condition ready to process jobs.

Deterministic: A property of a process which allows any future state of the
process to be predicted exactly. Repeated executions of a deterministic
software process will always produce the same results 1in the same amount of
time.

Directive: A command used to control a product, such as UPDATE.

Diagnostic: (1) Pertaining to the detection and isolation of a malfunction or
a mistake. (2) A message printed when its corresponding job is terminated
or the dataset is released.

Disposition code: A code used in I/0 processing to indicate the disposition
to be made of a dataset when its corresponding job is terminated or the
dataset is released.

DOALL: A loop with independent iterations.

DOPIPE: A software pipeline of program segments or iterations of a loop
that are not fTully independent.

Dynamic Load Balancing: A technique for distributing work evenly among par-
allel -tasks by having the task dynamically determine the work it will do by
means of run time decisions.

End-of-data-delimiter: Indicates the end of a dataset. In COS blocked for-
mat, this is 2 record control word with a 178 in the mode field.

End-of-file delimiter: Indicates the end of a file. (1) In COS blocked for-
mat, this is the record control word with a 168 in the mode field. (2) On
magnetic tape, this is a tapemark.

End-of-record delimiter: Indicates the end of a record. (1) In COS blocked
format, this is a record control word with a 108 in the mode field. (2) In
an ASCII punched deck, this is indicated by the end of each card.

EOD: End-of-data on tape. The definition of EOD is a function of whether
the tape is labeled or nonlabeled and of the type of operation being per-
formed (input or output). When reading a labeled tape, EOD is returned to
the user when an EOF1 trajler Tabel is encountered. When reading a nonla-
beled tape, EOD is returned when a tapemark is read on the last volume in
the volume list for a particular dataset. When writing a labeled or non
Tabeled tape, EOD processing is initiated by a write EOD, rewind, close, or
release request..

EOQl: End-of-information; see EOD.

EOT: End-of-tape; a status, set only on a write operation indicating sensing
of the end of the tape reflective marker. :

Ad

)

EOV: End-of-volume. On output, EOV occurs when end-of-tape status is
returned on a write operation. This status occurs when the EOT refiective
marker is sensed by the tape device. For input of a labeled tape dataset,
EOV occurs when an EOV1 trailer label is read; for input of a nonlabeled
dataset, EOV is returned when a tapemark is encountered and the volume list
is not exhausted.

Event: A signal indicating an action of significance to other tasks of the
same job. One means of coordinating multiple tasks is through the signaling
of (posting) and waiting for (testing) an event. (*EVENTMARK)

Exchange: A mechanism for facilitating the contact switch between tasks
(i.e., software processes).

Exchange Package: A 16-word block of data in an area of memory that is
reserved for exchange packages. This block of data contains the contents of
all of the necessary registers and conditions or mode flags which are asso-
ciated with a particular program. Each program residing in memory will have
an associated exchange package (refer to the CRAY-1 Hardware Reference Manu-
al).

Execution Point: The instruction of the code associated with a task that is
pointed to by the P register in an exchange package. Every task has an exe-
cution point.

Expression (JCL parameter expression): A series of characters grouped into
operands and operators which are computed as one value during parameter
evaluation; should be delimited by parentheses.

File: A collection of records in a dataset. In COS4b1ocked format, a file is
terminated by a record control word with 168 in the mode field.

Fork and Join: Transition points where the nature of a process changes from
serial (sequential) to parallel (FORK) and from parallel to serial (JOIN).

Formal parameter specifications: Parameters in a procedure definition which
jdentify the character strings within the procedure body that can be substi-
tuted during the procedure's evaluation.

Front-end processor: A computer connected to a Cray mainframe channel. The
front-end processor supplies data and jobs to the Cray computer and process-
es or distributes the output from the jobs. Front-end systems are also
referred to as stations in Cray publications.

Global Variable: A variable whose value is accessible throughout a program.

HEAP: A data structure providing for allocation and deallocation of vari-
able size blocks of storage.

HLM: High limit of memory, the highest memory address available to the user
for program and data area. '

IDLE: The state of the computer when all jobs are completed and it is wait-
ing for something to do.

$IN: A dataset containing the job control language statements as well as the
source input and data for compiler and assemblers, unless the user desig-
nates some other dataset.

In-line procedure: A procedure defined in a control statement file..

Instruction Stream: A series of instructions to be pointed to and executed
sequentially as a block of code. An instruction stream may be defined to be
a task if it can be executed in parallel with another instruction stream.
Instruction streams cdo not have their own exchange package but tasks do.

/O Subsystem: Part of a CRAY-1S Series Model $/1200 through S$/4400 con-
sisting of two to four I/O processors and one-half, one, four, or eight mil-
lion words of shared Buffer Memory. The optional tape subsystem is composed
of at least one block multiplexer channel, one tape controller, and two tape
units. The tape units supported are IBM-compatible S-track, 200 ips,
1600/6250 bpi devices.

lterative control statement block: Defines the repeated execution of a series
of statements if a condition is satisfied.

JCL block control statement: A statement in the control statement Tile that
is part of a group of control statements called a block which specifies an
action to be taken by COS; the three types of blocks are: procedure defini-
tion, conditional, and iterative.

JOB: (1) An arbitrarily defined parcel of work submitted to a computing sys-
tem. (2) A collection of tasks submitted to the system and treated by the
system as an entity. A job is presented to the system as a formatted data-
set. With respect to a job, the system is parametrically controlled by the
content of the job dataset.

Job Communication Block: The first 2008 words of the job memory field.
This area is used to hold the current control statement and certain job-
related parameters. The area is accessible to the user, the operating sys-
tem, and the loader for the inter-phase job communciation.

Job input dataset: A dataset named $IN on which the images of the job deck
are maintained. This consists of programs and data referenced by various job
steps. The user can manipulate the dataset Tike any other dataset (exclud-
ing write operations).

Job output dataset: Any of a set of datasets recognized by the system by a
special dataset name (e.g., SOUT, S$PLOT, and SPUNCH), which is automatically
staged to a front-end computer for processing.

Job Step: A unit of work within a job, such as source language compilation

or object program execution. Instructions to be executed and data associat-
ed with a particular control statement are parts of a job step.

A6

)

JTA: User job table area. The area di;ectTy above BA. The system uses this
area for job and dataset information, such as XP,DNT's, DAT's, B-T-V's, etc.

Keyword parameter: A string of 1 to 8 alphanumeric characters that consists
of a keyword followed by one or more values; identified by its form rather
than by its position in the control statement.

Labeled common: A common block into which data can be stored at load time.

Library: A dataset composed of sequentailly organized records and files. The
last file of the library contains a library directory. The rest of the files
and records, known as entries, can consist of processed procedure defini-
tions and/or related modules. The directory gives a listing of entry names
with their associated characteristics.

Library Scheduler: A Tibrary routine that assumes primary responsibility for
managing and scheduling library tasks to be connected to logical CPU's.

Library Task (Micro Task): This is a Cray term referring to tasks that are
controlled by multitasking library routine and by the Tibrary scheduler
(also a library routine, SSCHED).

Limit address: The upper address of a memory field. This address is main-
tained in the 1imit address (LA) register.

Literal: A symbol which names, describes, or defines itself and not something
else that it might represent.

Literal constant: A string of one through eight characters delimited with
apostrophes whose ordinal numbers are in the range 0408 through 1768; value
of a character constant corresponds to the ASCII character codes positioned
with a 64-bit word; alignment indicated can be left or right adjusted and
zero-filled of left-adjusted and space-filled; apostrophes reamin as part of
value.

Literal string: A string delimited with apostrophes which are normally not
treated as part of the value, except with JCL block control statements which
treat the apostrophes as part of the string value.

Load Balancing: A process used to insure that the amount of work done by all
processors involved in a job is approximately equal (i.e., the work is split
evenly among parallel tasks).

Local dataset: A temporary or permanent dataset that has pointers in a users
Job table area (JTA).

Local Variable: A variable whose value is known only to the program module in
which it is defined. It exists only during the execution of that module and
may not be accessed or modified by other modules.

Lock: A mechanism to provide unique access to data by a segment of code. A
process examines a lock before proceeding with a segment of code that

A7

requires unique access to some data (critical region). If one process is
accessing the cata all others must wait before entering corresponding criti-
cal regions.

$LOG: See logfile.

Logfile: During the processing of the job, a special dataset named $LOG is
maintained. At job termination, this dataset is appended to the $OUT file
for the job. The job Togfile serves as a time-ordered record of the activi-
ties of the job -- all control statements processed by the job, significant
information such as dataset usage, all operator interactions with a job, and
errors detected during processing of the job.

Logical CPU: A scheduling unit. In COS this is associated with an exchange
package. (*VIRTUAL PROCESSOR)

Loosely Coupled: A lower level of synchronization and communication required
by software processes in a multitasking or multiprocessing environment.

Memory field: A portion of memory containing instructions and data usually
defined for a specific job. Field limits are defined by the base address
and the limit address. A program in the memory field cannot execute outside
of the field nor refer to operands outside of the field. Multiprocessing The
utilization of more than one processor to logically or functionally divide
and to execute various segments in parallel.

Monitor: Controlling access to a critical region.

Multiprocessing: The utilization of more than one processor to logically or
functionally divide processes and to execute various segments in paraliel
Multiprocessing may be simulated by one processor in a multiprogramming
environment.

Multiprogramming: A technique for handling numerous routines or programs
simultaneously by interleaving their execution: i.e., permitting more than
one program to share machine resources (C0S 1.11 is a multiprogramming oper-
ating system using jobs as the unit of user work).

Multitasking: A technique in which several separate but interrelated tasks
operate under a single program or job identity. It may or may not be a form
of multiprocessing.

Nesting: Including a block of statements of one kind into a larger block of
statements of the same kind, such as an iterative block within a larger
jterative block.

$OUT: A dataset that contains 1ist output unless the user designates some
other dataset. At job end, the job logfile is added to the $OUT dataset and
the dataset is sent to a front-end computer.

Overlaying: A technique for bringing routines into memory from some other
form of storage during processing so that several routines will occupy the

A8

()

same storage locations at different times. Overlaying is used when the total
memory requirement for jnstructions exceeds the available memory.

Parallel: Objects (tasks, job steps, elements of an array) considered simulta-
neously (or nearly so) rather than in sequence or in some special order.
-
Parcel: A 16-bit portion of a CRAY word which is addressable for instruction
execution but not for operand references. An instruction occupies one or two
parcels; if it occupies two parcels, they may be in separate words.

Permanent dataset: A dataset known to the operating system as being perma-
nent; the dataset survives deadstart.

Physical CPU: A processor (a real hardware entity).

Pipelining: The beginning of an operation before a previous one has been com-
pleted. Pipelining is accomplished on the Cray through the use of fully
segmented functional units that allow several sets of operands to be at var-
jous stages of processing in the same functional unit at the same time.

Positional paramenter: A parameter that must appear in a precise position
relative to the separators in the control statement.

Posting: The entering of a unit of information in a location to be examined
for messages. An event is said to be posted when it is signaling some
occurrence having taken place. Event posting is done through a call to a
Tibrary routine in the Cray system.

Priority: The segquence in which various tasks and jobs will be processed.
Priority 15 jobs will begin before priority 1 jobs.

$PROC: A dataset to which in-line procedure definitions are written.

Procedure: A named sequence of control statements and/or data that is saved
in a library for processing at a later time when activated by a call to its
name by a calling statement; provides the capability of replacing values
within the procedure with other values.

Procedure definition: The definition of a procedure that is saved in a
1ibrary to be called for processing at a Tater time.

Program library: (PL) The base dataset used by the UPDATE utility. This
‘dataset consists of one or more specially formatted card image decks, each
separated by an end-of-file.

Ready: A state of a task in which it has fulfilled all conditions for its
execution and is queued for scheduling of a logical CPU (*PENDING)

Reentrant: The ‘property of a program module that allows one copy of it to be
used by more than one job or task. A mechanism is supplied by which the
routines environment is preserved, i.e., working storage and control indica-
tors are assigned independent storage location each time the routine is
called. Only reentrant code can recursive call itself.

AQ

Relative address: An-address defined by its relationship to the base address
register such that the base address has a relative address of 0.

Roll-ln: The act of reading a job into memory that had been previously
rolled.

-

Roll-Qut: The act.of writing a complete job area to the disk.

Relocatable module: This is the basic program unit produced by a compiler or
assembler. A relocatable module consists of several Toader tables that
define blocks, their contents, and address relocation information.

Scheduling Unit: An entity that can be scheduled as an independent unit by a
multiprogramming operating system (eg., tasks, Jjobs).

Scope of a Variable: That portion of code for which the variable is defined
and in which it can be referenced. In FORTRAN the portion of code is the
program, subprogram or statement.

Sector: A physical area on disk equivalent to 312 64-bit words. In COS
blocked format, a block is also 512 contiguous words with a block control
word as the first word of the block. Therefore the internal block size for
the CRAY is equivalent to one CRAY disk sector.

Serially Reusable: The property of an instruction stream that allows one copy
of it to be used by more than one job or task but only one at a time. The
second task wishing to enter a serially reentrant code must wait if another
user has entered first and not yet exited. The routines environment must be

" restored to its initfal condition after each use. This is referred to as
single threading of the code.

Shared Data: Data which may be referenced and modified by the program mod-
ules that share it.

Single Threading: Supporting only one user at a time. See Serially Reﬁsab]e.

Spin Wait: A special case of Busy Wait in which the process repeats the same
set of instructions, usually including condition checking, while waiting for
something to happen.

STACK: A data structure providing a dynamic sequential data 1ist having
special provisions for access from one end or the other. A last in, first
out (push down, pop up) stack is accessed from just one end.

Staging: The moving of data to/from the CRAY.

Starvation: A state of deprivation of a task in which it never gets a chance
to execute.

Static Load Balancing: A technique for distributing work evenly among paral-

lel tasks y assigning equal amounts of processing to each when designing the
task structure.

A10

N
g

Suspended: A state of a task in which it cannot be executed (i.e., it
doesn't have possession of a logical CPU).

Synchronous: A mode of operation in which the performance of an operation
does not begin until all previous operations are complete. The normal exe-
cution of FORTRAN code including I/0 statements is synchronous. Calls to
subroutine and function references in FORTRAN could be viewed as synchronous
operations. Synchronous 1/0 hardware channels operate under the restriction
that the ready (for output) or the resume (for input) signal is held on dur-
ing data transfer. , ;

System dataset name: The name of a system-defined dataset 1in the System
Directory Table (SDR); consists of an alphabetic character which can be fol-
lowed by one through fourteen alphanumeric characters.

System logfile: A permanent dataset named $SYSTEMLOG.

System Task: This is a Cray term that refers to the tasks that make up part
of the Cray Operating System (COS).

Task: A subjob or subprogram. A unique process that may have code and data
areas in common with other tasks of the same job. A task is treated as a
scheduling unit in a multitasking environment.

Task Control Array: The area in user assigned memory, but not accessible to
the user job, containing all the information associated with an active task
(one that has to be started but has not yet encountered the stop or return).
The coatents include: the tasks exchange package, pointers to the TASKSTACK
and subroutines containing task code.

Task Information Block (TIB): An area in the base of TASKSTACK that con-
tains information about the stack.

TASKSTACK: A puch down, pop up stack created upon the activation (firing
up) of a task. The elements of the TASKSTACK are activated record. 0One
activation block is created (placed on top) each time a subroutine is called
and popped off when STQP or RETURN is executed.

Temporary: Short term; for immediate use only; not made permanent by saving
it for long term future retrieval.

Temporary dataset: A dataset which is not permanent and is available only. to
the job that created it.

Tightly Coupled: A higher degree of synchronization and communication (bind-
ing) required by software processes in a multitasking environment. Tasks
may handle their own communication with other tasks of the same job. *Term
defined in the "Industrial Real-Time FORTRAN" Stand (IPW/EWICS T7C1,2.2/80).

Time slice: The maximum amount of time during which the CPU can be assigned
to a job without re-evaluation as to which job should have the CPU next.

A1l

User logfile: A dataset named $LOG created for a job when it is initiated by
the Job Scheduler.

User Task: This is a Cray term that refers to the tasks as they are known to
the operating system COS. Each has an exchange pack and an ‘entry in the
Task Execution Table (TXT). The Library Schedule may switch Library Tasks
connected to a single User Task.

Word: A group of bits between boundaries imposed by the computer. Word size

must be considered in the implementation of logical divisions such as char-
acter. The word size of a Cray computer is 64 bits.

Al2

()

)

)

APPENDIX B

PUBLICATIONS LIST
SYSTEM ACRONYMS
JCL

APP. B - SWCE1APP 11/85

~

()

)

lenuey 30ualajay jeusdjul suondiiosaq ajqel SOl

Ienuel 90UaL350Y |BUIdJU| DIEM)}OS SOI

apIny s Joyesado sof

jenue 95ualadjay _c-_...mac_ 198§ 19npoad SO
jenuey adua49jay (HATYIS) 1apeo] judwbog
enuely 30uasa)3y (aIS) +966ngaq aansessul JljoquIkg
2pInY s, 495N (1G34) JoUPI IxaL

jenuely 20ua1943H ALVAdN

LOOO-WS

9v00-NS

1S00-9S

IY00-NS

9900-HS

9500-9S

$500-9S

€100-HS

19

j¥nNULY G0UBIO)OY L0|qUOSSY TNDY

I¥NuLY 92UIIBJOY | UOISIIA JO|qUIBSSY VD
fenuely a2ualaay |eusdju] jessed

jenuepy 22us13jay Jessed

jenuely asuasajay Aseaqly

ienuey 00:0.._30: jeusdyu) (149) NYHLHOS

Ienuely 9ouasdjoy (L49) NYHLHOA

Ienuely 2oualdjay suopdiassaq ajqel S0
lenuely 92ud1ajay sply jeuoliesadg SO

lenuey 99Ud13)3t SIINPI0Id JeuonesadQ S0

lenuepy asuasajoy euiajui dsO/dLS/2aX3 S0D
jenuey abessopy SO-AVHD

jenuejy aduaiajay sjopdQ pue sosoey

jenuey 9o0uaiajay (S0J) SO-AYHD

)

9€00-W!
0000-H:¢
1900-N
0900-H¢
P 100-H¢
LI0O-WNS

6000-HS

SY00-WS
PrOO-NS

Ev00-NS

b

..ﬂ 28] i .m
OP00-NS

6£00-US
Z100-HS

}100-HS

MEP
T
ODN
oM

PDD
PDI -
£OM
PDS
POOLTBL
PUT

RO11
RJI
RQT
RTI

SC8
SCP
SOT
sPH
STG
STP
STT

TBPT
TIO
oM

XP
QDT
Z

$SYSLOG
$LOG
$BLD
$IN

$CS
$ouT

MESSAGE PROCESSOR TASK
MEMORY SEGMENT TABLE

OPEN DATASET NAME TABLE
OVERLAY MANAGER TASK

PERMANENT DATASET DEFINITION TABLE
PERMANENT DATASET INFORMATION TABLE
PERMANENT DATASET MANAGER TASK
PERMANENT DATASET TABLE

POOL TABLE

PHYSICAL UNIT TABLE

DISK DRIVER

ROLLED JOB INDEX TABLE
REQUEST TABLE

REAL TIME CLOCK INTERRUPT

STREAM CONTROL BYTE

STATION CALL PROCESSOR TASK
SYSTEM DATASET TABLE

SYSTEM PERFORMANCE MONITOR TASK
STAGER TASK g

SYSTEM TASK PROCESSOR

SYSTEM TASK TABLE

TASK BREAKPOINT TABLE
TASK I/0 ROUTINES
TAPE QUEUE MANAGER TASK

EXCHANGE PACKAGE

QUEUED DATASET TABLE
STARTUP TASK

CRAY HISTORY LOG

USER HISTORY LOG

OBJECT CODE FROM CFT, CAL
JOB DATASET INPUT

JCL FILE
JOB PRINT OQUTPUT

B2

AREA

mwvnunmm mwnmwnm unnc wm C

mw nuwv N n

w LN Wn

)

)

AUT
BCW

CBT
CHT
Cl
CIO0
CMCC
CMOD
CSD
csp

DAT
DCT
DOL
DEC
DET
DNT
DRT
psc
DSP
DVL

DQM

EQT
ERR
EX
EXEC
EXp

IBT
FED

JCB
JCL
o
pE]
JSQ
JTA
JXT

LCP
LCT
LFT
LIT
Lo6
LST
LTX

ACTIVE USER TABLE
BLOCK CONTROL WORD

CHANNEL BUFFER TABLE
CHANNEL PROCESSOR TABLE
CHAIN ITEM

CIRCULAR I/0 ROUTINE

COMMUNICATION MODULE CHAIN CONTROL

COMMUNICATION MODULE
CLASS STRUCTURE DEFINITION
CONTROL STATEMENT PROCESSOR

DATASET ALLOCATION TABLE
DEVICE CHANNEL TABLE
DATASET DEFINITION LIST
DISK ERROR CORRECTION TASK
DEVICE ERROR TABLE
DATASET NAME TABLE
DEVICE RESERVATION TABLE
DATASET CATALOG

DATASET PARAMETER AREA
DEVICE LABEL

DISK QUEUE MANAGER TASK

EQUIPMENT TABLE

ERROR EXIT

NORMAL EXIT

SYSTEM EXECUTIVE ROUTINE
EXCHANGE PROCESSOR TASK

INTERACTIVE BUFFER TABLE
FRONT-END DRIVER

JOB COMMUNICATION BLOCK

JOB CONTROL STATEMENT LANGUAGE
JOB CLASS MANAGER TASK

JOB SCHEDULER TASK

JOB SEQUENCE NUMBER

JOB TABLE AREA

JOB EXECUTION TABLE

LINK CONTROL PACKAGE

LINK CONFIGURATION TABLE
LOGICAL FILE TABLE

LINK INTERFACE TABLE

MESSAGE TASK

LI} INTERFACE STREAM TABLE
LINK IMTERFACE EXTENSION TABLES

B3

AREA

uss

cCuLHhunmuviunmumrmm

u/s

/S

DISK
Us
BISK

N ununmacwm

U/s
U/S/t

nmnoc ununwmc < m

nununmohcacw

JOB DEFINITION AND CONTROL

JOB = JOB IDENTIFICATION

MODR ~ SET OPERATING MOUE

EZXIT = EXIT PROCESSING

MEMORY = REQUEST MEMORY CHANGE

SWITCH ~ SET OR CLEAR SENSE SWITCH

® < COMMENT STATEMENT

NORERUN - CONTROL DETECTION OF NONRERUNNABLE FUNCTIONS
RERUN - UNCONDITIONALLY SET JOB RERUNNABILITY

IOAREA - CONTROL USER'S ACCESS TO I/O AREM

CALL ~ READ CONTROL STATEMENTS FPROM ALTERNATE BATASEY
RETURN - RETURN CONTROL TO CALLER

ACCOUNT ~ VALIDATE USER NUMBER AND ACCOUNT

CHARGES - JOB STEP ACCOUNTING

ROLLJOB = ROLL A USER JOB TO DISK

SEE ~ CHANGE SYMBOL VALUE

ECHO - ENABLE OR SUPPRESS LOGFILE HMESSAGES

LIBRARY - LIST AND/OR CHANGE LIBRARY SEARCELIST
OPTION = SET USER-DEFPINED OPTIONS

DATASET DEPINITION AND CONTROL

ASSIGH¥ — ASSIGN DATASET CHARACTERISTICS
RELEASE - RELEASE DATASET

PPRMANENT DATASET MANAGEMENT

SAVE = SAVE PERMANENT DATASET

ACCESS = ACCESS PERMANENT DATASET

ADJUST - ADJUST PERMANENT DATASET

MODIPY — MODIFY PERMANENT DATASET

DELETE - DELETE PERMANENT DATASET

PERMIT = EXPLICITLY CONTROL ACCESS TO DATASET

DATASET STAGING CONTROL

ACQUIRE - ACQUIRE PERMANENT DATASET
DISPOSE -~ DISPOSE DATASET

SUBMIT - SUBMIT DATASET

PEICH - PETCH LOCAL DATASET

PERMANENT DATASET UTILITIES

PDSDUMP - DUMP PERMANENT DATASET
PDSLCAD = LOAD PERMANENT DATASET
AUDIT - AUDIT PERMANENT DATASET

LOCAL DATASET UTILITIES

COPYR ~ COPY REGORDS

COPYP ~ COPY PILES

COPYD - COPY DATASET

SKIPR - SKIP RECORDS

SKIP¥Y - SKIP FILES

SEIPD = SKIP DATASEY

REWIND «~ REWIND DATASET

WRITEDS ~ WRITE RANDOM OR SEQUENTIAL DATASET

ANALYTICAL AIDS

DUMPJOB ~ CRERTE $DUMP

DUMP - DUMP REGISTERS AND MEMORY

DEBUG ~ PRODUCE SYMBOLIC DUKP

DSDUMP = DUMP DATASET

COHPARE = COMPARE DATASETS

PRINT -~ WRITE VALUE OF EXPRESSIOE 70O LOGFILE
PILODUMP ~ FPLOW TRACE RECOVERY DUMP

SY¥SREP = GENERATE GLOBAL CROSS-REFERENCE LISTING
ITEMIZE - INSPECT LIBRARY DATASETS

CONTROL STATEMENT BLOCKS .

IF - BEGIN CONDITIONAL BLOCK

ENDIFP ~ END CONDITIONAL BLOCK

ELSE « DEPINE ALTERNATE CONDITIONR
ELSEIF -~ DEFINE ALTERNATE CONDITIOM
. LOOP - BEGIN ITERATIVE BLOCE
ENDLOOP = END ITERATIVE BLOCE
EXITLOOP « END ITERATION

PROCEDURES

PROC = BEGIN PROCEDURE DEPINITION
PROTOTYPE STATEMENT = INTROOUCE A PROCEDURE
PROCEDURE DEFINITION BODY

EDATA = PROCEDURE DATA B[l,
AT AT . TN DEACYTIID R MNP T TP AN

JCL SR-0011

()

CAL SR-0000

PSEUDO_INSTRUCTIONS

Program control
IDENT - Identify program module
END - End program module
ABS - Assemble absolute binary
COMMENT - Define Program Descriptor Table comment
Loader linkage
ENTRY = Specify entry symbols »
EXT - Specify external symbols
MODULE ~ Define program module type for loader
START - Specify program entry
Mode control
BASE - Declare base for numeric data
QUAL - Qualify symbols :
Block control
BLOCK - Local block assignment
COMMON - Common block assignment
ORG - Set *0Q counter
BSS - Block save
LOC - Set * counter
BITW ~ Set *W counter
BITP - Set *P counter
ALIGN - Align on an instruction buffer boundary
Error control
ERROR - Unconditional error generation
ERRIP - Conditional error generation
Listing control
LIST - List control
SPACE - List blank lines
EJECT - Begin new page
TITLE - Specify listing title
SUBTITLE - Specify listing subtitle
TEXT - Declare beginning of global text source
ENDTEXT - Terminate global text source
Symbol definition .
= - Equate symbol
SET - Set symbol
MICSIZE - Set redefinable symbol to micro size
Data definition
CON - Generate constant
BSS2 - Generate zeroced block
DATA -~ Generate data words
VWD - Variable word definition
REP -~ Loader replication directive
Conditional assembly
IFA ~ Test expression attribute for assembly condition
IFE - Test expressions for assembly condition
IPC -~ Test character strings for assembly condition
SKIP - Unconditionally skip statements
ENDI? - End conditional code sequence
ELSE - Toggle assembly condition
Instruction definition
‘MACRO - Macro definition
OPDEF - Operation definition
LOCAL - Specify local symbols-
ENDM - End macro or opdef definition
OPSYN - Synonymous operation
Code duplication
DUP -~ Duplicate code
ECHO - Duplicate code with varying arguments
ENDDUP ~ End duplicated code
STOPDUP ~ Stop duplication
Micro definition
MICRO = Micro definition
OCT™IC and DECMIC - Octal and decimal micros

B5

SYSTEM ACTION REQUEST MACROS

JOB CONTROL MACROS
ABOR? ~ Abort program
CONTRPV -~ Continue from reprieve condition
CSECHO - Send statement image to the logfile
DELAY - Delay job processing
DUMPJOB - Dump job image
ENDP - End program
ENDRPV - End reprieve processing
IOAREA - Control user access to 1/0 area
JTIME - Request accumulated CPU time for job
MEMORY < Ragquest Bemory
MESSAGE - Enter message in logfile
MODE - Set operating mode
NORERUN - Control detection of nongerunnable functions
RECALL - Recall job upoa I/0 request completion
RERUN - Unconditionally set job rerunnability
ROLL - Roll a job
SETRPYV - Set job step reprieve
SWITCH - Set or clear sense switch
DATASET MANAGEMENT MACROS N
CLOSE - Close dataset
DISPOSE -~ Dispose dataset
DSP - Creats dataset parameter table
OPEN - Open dataset
RELEASE - Releasg¢ dataset to systesm
SUBMIT ~ Subait job dataset
TIME AND DATE REQUEST MACROS
DATE - Get current date
DTTS - Date and time to timestamp conversion
JDATE - Return Jullan date
MITS ~ Machine time to timestamp conversion
TIME - Get curtent time
TSDT - Timestamp to date and time conversion
TSMT - Timestamp to machine time conversion
DEBUGGING AID HACROS
DUMP - Dump selected areas of memory
FPREAD - Read data
FWRITE - Write data
INPUT - Read data
LOADREGS - Restore all registers
QUTPUT - Write data
SAVEREGS - Save all reglsters
SNAP - Take snapshot of selected registers
UFREAD - Unformatted read
UFWRITE~ Unformatted write
MISCELLANEOUS MACROS
GETMODE - Get zode setting
GETSWS - Get switch setting
INSFUN - Call installation-defined subfunction
SYSID - Request system identification

LOGICAL I/O MACROS

SYNCHRONOUS READ/WRITE MACROS

READ/READP - Read words

READC/READCP -~ Read characters

WRITE/WRITEP - Write words

WRITEC/WRITECP - Write chagacters

WRITED - Write end of data

WRITEP - Write end of £ile
ASYNCHRONOUS READ/WRITE MACROS

BUFCHECK - Check buffered 1/0 completion

BUPEOD - Write end of data on datiset

BUPEOF - Write end of file on dataset

BUPIN/BUFINP_ - Transfer data from dataset to user record

BUFOUT/BUPOUTP - Transfec data froe usec gecord aces
UNBLOCKED READ/WRITE MACROS

READU - Transfer data from dataset o user's acea

WRITEU - Transfer data from user’s area %o dataset
POSITIONING MACROS

ASETPOS - Asynchronously position dataset

BKSP ~ Backspace record

BKSPP ~ Backspace file

GETPOS - Get cugrent dataset position

POSITION - Position tape

REWIND - Rewind dataset

SETPOS - Synchronously position dataset

SYNCH - Synchronize

TAPEPOS ~ Tape position information

PERMANENT DATASET HACROS

PERMANENT DATASET DEPINITION MACROS

LDP - Create label definition tabls

POD -~ Create permanent dataset definitiom table
ACCESS - Access permanent dataset

ADJUSE - Adjust permanent dataset

DELETE - Delete permanant dataset

PERMIT - Explicitly permit dataset

CAUR = Save Darainent dataset B6

Macros & Opdefs

SR-0012

()

Macros & Opdefs SR-0012

CFT LINXAGE MACROS

DESICN OF THE ENTRY BLOCK MACROS
DEFARG - Define calling parameters
DEZFS - Assign names to B registers
DEFTr - Assign names to T registers
ALLOC - Allocate space for local temporary variables
MXCALLEN - Declare maximum calling list length
PROGRAM ~ Generate mainline CAL routine start point
ENTER - Generate CFT-callable entry point
RETRIEVE PASSED-IN ARGUMENT LIST INFORMATION MACROS
ARCADD - FPetch argument address
NUMARG - Get the number of arguments passed in
REFERENCE LOCAL TEMPORARY VARIABLE STORAGE MACROS
LOAD ~ Get value from memory into a register
STORE - Store the value from a register into memory
VARADO - Return the address of a memory location
CALL EXTERNAL ROUTINES MACROS
CALL - Call a routine using call-by-address sequence
CALLV - Call a routine using call-by-value sequence
EXIT SUBROUTINE MACRO
EX1T+- Terminate subroutine and return to caller

TABLE AND SEMAPHORE MANTPULATION .

TABLE DEFINITION AND CONSTRUCTION MACROS
Normal Macros
BUILD - Construct a table structure
ENDTABLE - Designate the end of a table definition
PIELD - Define a field with current table structure
NEXTWORD = Advance a specified number of words
REDEFINE -~ Redefine a specified number of words
SUBPIELD - Identify fields within a larger field
TABLE - Define the overall table attributes
Complex macros
CENDTAB - End a complex table structure .
CPIELD - Define a field in the current complex table
CNXTWORD - Advance a specific number of 64-bit words
CREDEF - Redefine specific number of 64-bit words
CSBPIELD - Define field entirely within ancther field
CTABLE ~ Define overall table attributes
PARTIAL-WORD MANIPOLATION OPDEFS
Norsal Opdefs
GET - Petch contents of a field
GETPF - Petch contents of a field
PUT - Store data from a register into a field
SET - Pack field value into a register
S5GET - Petch contents of a field
SPUT - Store data from a register into a field
Complex Opdefs
CGET - Fetch contents of a field into a register
CPUT - Store contents of a register into a field
SEMAPHORE MANIPULATION MACROS
DEPSM - Define semaphore name
CLRSM - Unconditionally clear a semaphore, do not wait
GETSM ~ Get current status of semaphore bit
SETSM - Unconditionally set a semaphore, do not wait
TEST$SET - Test semaphore and wait if set, set if clear
CAL EXTENTION MACROS AND OPDErFS
DIVIDE OPDEF - Provide a precoded divide routine
PVEC MACHO ~ Pass elements of vector register to scalar routine
SCYCLES MACRO- Generate timing-related symbols and constants
SDECHIC MACRO - Convert a positive integer to a micto string
RECIPCOW MACRO - Generate floating-point reciprocals

CO0S DEPENDENT MACROS

SYSTEM TASK OPDErFS
ERDEP - Generate error processing ont_;:l_c_: in the Exchange Processor
GETDA - Obtain first DAT page address)
~ GETMDA - Obtain next DAT page addresa
OVERLAY MANAGER TASK MACROS
CALIOVL - Request Overlay Manager Task to load
Dnuxm - Generate a list of modules
ISABLE - Prevent use of current memory-reside;
nt co
GOTOOVL - Request Ovecrlay Manager Task to load il
LOADOVL -~ Request an initial overlay load ¢
OVERLAY - Define a module as a system overlay
OVIDEY - Define overlay name
RTNOVL - Signal completion of an overl
ves p g ay execution
LOGMSGM - Construct the LGR control word

B7

UPDATE DIRECTIVES Update SR-0013

BEFORE - INSERT BEFORE DIRECTIVE -
CALL - CALL COMMON DECK DIRECTIVE
COMDECK - COMMON DECK DIRECTIVE

COMPILE - COMPILE DIRECTIVE

CWEOFP - CONDITIONAL WRITE END-OF-FILE DIRECTIVE 2
DECK - DECK DIRECTIVE ’
DECLARE -~ DECLARE DECK FOR MOD APPLICATION DIRECTIVE
DELETR - DELETE CARDS DIRECTIVE
EDIT - EDIT DECKS DIRECTIVE
IDENT -~ MODIFICATION SET IDENTIFICATION DIRECTIVE
INSERT = INSERT AFTER DIRECTIVE
LIST AND NOLIST = RESUME/STOP LISTING DIRECTIVES
MOVEDK - MOVE DECK DIRECTIVE .
PURGEDK - REMOVE DECK DIRECTIVE
READ -~ READ ALTERNATE INPUT DIRECTIVE
SEQ AND NOSEQ = START/STOP SEQUENCE NUMBER WRITING
WEOF - WRITE END—-OP-FILE DIRECTIVE -
/ = COMMENT DIRECTIVE
YANK AND UNYANK - ANK/UNYANK DECKS AND MODIFICATION
QPERATIONAL AIDS Operational Aids SM~0044
UNB - Converts binary load modules
ADSTAPE - Builds IOP deadstart datasets
EXTRACT - Extracts messages from the system logfile
FDUMP - Formats control memory dump
STATS - Gathers mainframe performance statistics &
JSCDEF - Defines a job class structure g
PRVDEF - Defines permanent dataset privileges
BCCTDEF - Defines accounting entries
MODSET = Merges modifications into a set
SPAWN - Submits multiple jobs
STEP - Tests job steps
MODSEQ - Resequences mods
BIND - Resolves APML externals
SETOWN - Sets permanent dataset ownership
EXTRACT DIRECTIVES FDUMP DIRECTIVES
SELECT ~ CLASS 1 DIRECTIVES
INPUT FILES
OoUTPUT ‘ DMEM
LINES : CoMP
FLUSH . - XCOMP
NOHEADER DSYM
" DUMP AUTC
RAWDUMP DSDT
LEFT8 and RIGHTS ‘ DXTR
END ‘CPU
SUMMARY » fop C
SETBIAS
DSSD
CLASS 2 DIRECTIVES
TITLE
B8 SPACE

PLUSH

I0S Operators Guide SG-0051

TYPES OF KERNEL COMMANDS
Initialization commands
CRAY
STATION
HASTER
CONFIG
Concentrator commands
Comaunication with CRI front-end interface
CONC
ENDCONC
Communication with an NSC Al10 adapter
NSC '

NSCEND
Interactive communication with COS
IAIOP
IAIO? LOG
IAIOF POLL
IAIOP LOGOPP
IAIOR END

IACON
Hiscellaneous maintenence commands

LISTP

LISTO

UBTAPE

PRTAPE

ERRDMP

ERROR

TIME

CLOCXK

STATION COMMAND DESCRIPTIONS

Command formats

Station command summacy
CHANNEL - Turn channel on or off
CLASS - Turn job classes on or off
CLEAR - Clear screen :
COMMENT - Command Stream comment
CONFIGURE - Alters tape or disk device configuration
CONSOLE - Allocate additional station conscle
DATASET - Display dataset status
DELAY - Suspend command processing
DEVICE -~ Change read-only status on mass storage
DISK - Display disk statistics
DROP - Drop job
END - End station operation
ENTER - Change job scheduling parameters
ERROR - Display hardware error information
PLUSH - Copy data to backup dataset
JOB - Display job status .
KILL - Kill job
LIMIT - Limit number of jobs active
LINK < Link status display
LOGOFPF - Log off station
LOGOM - Log on station
MESSAGE - Enter message into logfile
MONITOR - Monitor system parameters
OPERATOR - Change master operator station
POLL - Set control message axchange rate
RECOVER -~ Recover system :
REFRESH - Set display refresh rate
REPLY - Reply to station request message
RERUN - Rerun job
RESUME - Resume job processing
ROUTE - Change station ID
SAVE ~ Stage permanent dataset
SCROLL - Use display for command/response scroll area
SET - Modify pactameters
SHUTDOWN - Shut down the system
SNAP - Print display contents
STAGE -~ Halt or resume staging
STATCLASS - Display job class status
STATION - Display I/O Subsystem station status
STATUS - Display system status
STMSG = Display station messages
STORAGE - Display mass storage status
STP - Display System Task Processor statistics
STREAM - Change stream counts
SUBMIT - Stage job dataset
SUSPEND - Suspend job processing
SWITCH - Manipulate job sense switches
TAPE - Display tape device information
TJO8 - Diplay tape job's status

B9

APML SM-0036

PSEUDQ INSTRUCTIONS

Program control
IDENT - Identify program module
END - End program module
ABS - Assemble absolute binary
COMMENT - Define program descriptor table comment
GLOBAL = Declare global symbols
Code control
BASEREG - Declare base operand register
SCRATCH - Declare APML scratch register
NEWPAGE -~ Force a new instruction page
Loader linkage
ENTRY ~ Specify entry symbols
EXT - Specify external symbols
START ~ Specify program entry
Mode control
BASE = Declare base for numeric data
QUAL - Qualify symbols
Block control
BLOCK - Local block assignment
ORG = Set *O counter
BSS - Block save
LOC - Set * counter
BITHW - Set *W counter
BITP - Set ?P counter
Error control
ERROR - Unconditional error generation
ERRIP - Conditional error generation
Listing control
LIST - List control
SPACE - List blank lines
EJECT - Begin new page
TITLE - Specify listing title
SUBTITLE - Specify listing subtitle
TEXT - Begin global text
ENDTEXT - Terminate global text
Symbol definition
EQUALS ~ Equate symbol
SET = Set symbol
CHANNEL = Channel symbol
MICSIZE ~ Set redefinable symbol to micrc size
Data definition
CON - Generate constant
BSSZ ~ Generate zeroed block
DATA - Generate data words
PDATA - Generate data parcels
VWD - Variable word definition

Conditional assembly
1FR - Test expression attribute for assembly condition

IFE - Test expressions for assembly condition
1FC - Test character strings for assembly condition

SKIP - Unconditionally skip statements
ENDIP - End conditional code sequence
BLSE = Toggle assembly condition
Instruction definition
MACRO = Macro definition
LOCAL - Specify local symbols
END¥ -~ End macro definition
OPSYN - Synonymous operation
Code duplication
DUP ~ Duplicate code
ECHO - Duplicate code with varying acguments
ENDDUP - End duplicated code
STOPDUP -~ Stop duplication
Microa
MICRO ~ Micro definition
OCTMIC and DECMIC -~ Octal and decimal micros
Predefined micros

B10

()

